US009235448B2

a2z United States Patent (10) Patent No.: US 9,235,448 B2
Kondamuru et al. 45) Date of Patent: Jan. 12, 2016
(54) SYSTEMS AND METHODS FOR BATCHABLE ;,(1)22%2; g} . ?gggg éalas et al. | 091202
s A raupner etal. ...
HIERARCHICAL CONFIGURATION 7451,359 B1* 11/2008 Coekaerts ..........c.ccoeeeu. 714/48
7,496,651 Bl 2/2009 Joshi
(75) Inventors: Ravi Kondamuru, Santa Clara, CA 7729353 Bl 6/2010 P(z)sdélsky
(US); Murali Raja, Santa Clara, CA 7,937,716 B2 5/2011 Betts et al.
Us) (Continued)
(73)  Assignee: EIT;H? ISYFSLTICEUNg INC., Fort FOREIGN PATENT DOCUMENTS
auderdale,
WO WO-02/44848 6/2002
(*) Notice: Subject to any disclaimer, the term of this WO  WO0-2007/064350 6/2007
patent is extended or adjusted under 35 WO WO-2008/112698 A2 9/2008
U.S.C. 154(b) by 711 days. OTHER PUBLICATIONS
(21) Appl. No.: 12/277,675 Cisco0l; “Cisco Global Site Selector CLI-Based Global Server
) Load-Balancing Configuration Guide”; Mar. 2006; v1.3; pp. 1-465.*
(22) Filed: Now. 25, 2008 (Continued)
(65) Prior Publication Data .
Primary Examiner — Anthony Mejia
US 2010/0131620 Al May 27, 2010 Assistant Examiner — Janakkumar Patel
(51) Int.Cl (74) Attorney, Agent, or Firm — Foley & Lardner LLP;
GO6F 15/16 (2006.01) Christopher J. McKenna
GO6F 15/177 (2006.01) 57 ABSTRACT
GO6F 9/50 (2006.01) 7)
(52) US.CL A centralized configuration of a Global Server Load Balanc-
CPC ..covvoveeee GOG6F 9/5083 (2013.01); GOGF 15/16 ~ 1ng (GSLB) site hierarchy may be batched across a plurality
(2013.01) of'appliances in a multi-site deployment. A single GSLB site
(58) Field of Classification Search hierarchy configuration may be distributed and operated on
CPC GOGF 15/16: GOGF 15/177 each appliance at each site. This reduces the configuration
uspc T " 209/220-222 maintained for the multi-site deployment. Furthermore, in
See apphcatlonﬁleforcomplete ‘search history. this manner, each appliance across multiple sites has an
' understanding of the entire topology of the multi-site deploy-
(56) References Cited ment. Responsive to this configuration and understanding,
each appliance may perform and optimize operations accord-
U.S. PATENT DOCUMENTS ing to the site topology. For example, the appliances may
selectively determine which sites to establish connections
2 ’igg"z‘gg ﬁ | (1); éggg (B)?Il\?s_ft fl | with in order to share metrics. In another example, appliances
6711171 Bl 3/2004 D. ob‘gn: e?tl al. may select which remote sites to monitor services according
6725262 Bl 4/2004 Choquier et al. to the topology.
7,047,315 B1* 5/2006 Srivastava ................... 709/238
7,086,061 B1* 8/2006 Joshietal. ................ 718/105 20 Claims, 16 Drawing Sheets

Appliance 200

N\

Svr-D1

S$wr-B1  Swr-B2

Appliance 2008

Svr-At - Svr-A2 \}‘?37




US 9,235,448 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,190,715 Bl
2002/0052937 Al*
2004/0210653 Al
2004/0267913 Al

5/2012 Narayanaswamy et al.

5/2002 Jager ... 709/220
10/2004 Kanoor et al.
12/2004 Koneru

2006/0047792 Al* 3/2006 Dharmarajanetal. ... 709/220

2006/0069776 Al* 3/2006 Shimetal. ... 709/225

2007/0233851 Al 10/2007 Ma

2010/0131622 Al* 5/2010 Brewisetal. ............. 709/221
OTHER PUBLICATIONS

Cisco02; “Cisco Global Site Selector Administration Guide”; Sep.
2008; v 3.0; pp. 1-274.*

Cisco0l; “Cisco Global Site Selector CLI-Based Global Server
Load-Balancing Configuration Guide”; Mar. 2006; v1.3; Cisco Sys-
tems, Inc.; pp. 1-465.

Cisco03; “Cisco Global Site Selector Getting Started Guide”; Sep.
2008; v3.0; Cisco Systems, Inc.; pp. 1-93.

International Preliminary Report on Patentability on PCT/US2009/
065787 dated Jun. 9, 2011.

US Office Action on U.S. Appl. No. 12/277,690 dated Feb. 17, 2011.
US Office Action on U.S. Appl. No. 12/277,690 dated Jun. 13,2011.
International Search Report on PCT/US2009/065787 dated Dec. 13,
2010.

Office Action on U.S. Appl. No. 12/277,690 dated Mar. 1, 2012.
Wollman W'V et al: “Plug and play server load balancing and global
server load balancing for tactical networks”, 2003 IEEE Military
Communications Conference, MILCOM 2003. Boston, MA, Oct.
13-16, 2003; [IEEE Military Communications Conference], New
York, NY : IEEE, US LNKD—DOI: 10.1109/MILCOM.2003.
1290280, vol. 2, Oct. 13, 2003, pp. 933-937, XP010698612, ISBN:
978-0-7803-8140-7 p. 933, right-hand column, line 13 p. 934, right-
hand column, last line figures 1-3.

Written Opinion on PCT/US2009/065787 dated Dec. 13, 2010.

US Office Action on U.S. Appl. No. 12/277,690 dated Oct. 16, 2012.
US Office Action on U.S. Appl. No. 12/277,690 dated Dec. 16,2013.
US Notice of Allowance in U.S. Appl. No. 12/277,690 Dtd Apr. 30,
2015.

US Office Action for U.S. Appl. No. 12/277,690 dated Dec. 26, 2014.
US Office Action for U.S. Appl. No. 12/277,690 dated Jun. 19, 2014.

* cited by examiner



US 9,235,448 B2

Sheet 1 of 16

Jan. 12, 2016

U.S. Patent

ugol

TEIVETS

O O

qo0l JealeS

|
|

egol

FEYVETS

a a
o o
a a
=] o

y
y F0l1
HoMISN

<

o
o

Vi "OId

aouel|ddy

00c

j10MISN

uzoL wsIo

qcol a0

BZ0L 3jusnd

—+4




US 9,235,448 B2

Sheet 2 of 16

Jan. 12, 2016

U.S. Patent

ug9QlL  JaAaS

o oo o

o oo o

O O

qool Janleg

|
|

B90l J1oAlDS

souelddy

gl 'Old

uzoL usio

qzol  wsd

% M1omIaN

00¢C

ezolL 3jusnd

=




US 9,235,448 B2

Sheet 3 of 16

Jan. 12, 2016

U.S. Patent

ugolL  Jamas

|
|

O O

q90l Ianieg

a
o
o
=]

o oo aa

|
|

egQl Janlog

(ao1n0p
uopyezjwpdo

NVM
aouelddy

Ol "Old

H_1—H

S0¢C

uonezjwpdo

(ao1n0p

NVM
aouelddy

uzol juald

qzol Lo

S0C

BZ0L wald

S=—"D




US 9,235,448 B2

Sheet 4 of 16

Jan. 12, 2016

U.S. Patent

dl "Oid

aouelddy

0L udld

ol

jI0MISN

V90l J9AIeg
Q61 90IM8S
Buniopuowl
901 J9MI9g aouew.opad
161
juabe Bulopuow
aouewlopuad
g6l
auIbug Aolj0d 0L
— NIOMISN
061 walshAs
Aanlle@
uones|ddy
9y eleq
uones|ddy

00¢

021 usby JuslD

9l Bjeq

uones|ddy

l JUswuoJIAUg
Bunndwo)

IIIIIIIIIIIIIIIIIIIII




US 9,235,448 B2

Sheet 5 of 16

Jan. 12, 2016

U.S. Patent

me I

i1 'Old
90INe(]
BUNUIOY pIe0gASY
m:J o:) u-epzl Nﬁ\
soe | 90IAS(] / Td10
IOMION uone|[ejsu (s)eo1nop oll
Aejdsiq
//mﬁ
>
%h\
abe.o)s Aiows
ulepy bn_o
- Juaby
0zL—"| uaI) 721 104
2IEM)JOS
SO
—

mwhw(\

ﬁcch



US 9,235,448 B2

Sheet 6 of 16

Jan. 12, 2016

U.S. Patent

41 "9Ol4
Q0TA(T
O/l
eogs—
eﬁ\
0/1L—1°%pud
Q0TA(T
Ol £0b—
qoe1—" KI0WSIN uod | Hod|1og
UTRIN AJowaN | O/ | O/
4 I
OSQNO HOmmOQOHm
UIe
ovi—’
wor—"




US 9,235,448 B2

Sheet 7 of 16

Jan. 12, 2016

U.S. Patent

vZ 'Ol -
— — — — i
99¢ suod ¥9¢ C9¢C c9¢ | 10Ss9%01d | _
NIOM]ON Kowa| 10SS9201d || 10SS9204d | ! uondAioug | 90¢
X _,----..-v.4 ........ . alempJeH
792 YoelS \
YIOMISN
yceZ auibug
uondAioug
eve Janq e Jewil
0vz auibuz 19)2ed pajelbaju|
L-g 19fe paads-ybiH 05z 0z
— -~ [ouIoy| 9oedg
o0 562 rAYA [ETINE)Y |
J1obeue
uorssaidwo) suibug " w:omos_
|020304d-IINN fo110d
T | .....
INDS uowde(q wa)sAs 507
— p— p— p— aoedg
91T vic cie 0lLe
suieboid seoIMBg [IoUS | 11D NS 1osn

Buuiojiuopy yjjesH




US 9,235,448 B2

Sheet 8 of 16

Jan. 12, 2016

U.S. Patent

ugQl JoMISS

UQLc 90INBS

q901 I19Aleg

40.c 8dINIBS

90| JoAI9S

B0.C 9JINIBS

y

Y 0L
NIOMJON

d¢ Old

00C oouelddy

161
juabe Bulojuow

062 M4 ddy

88z UoljeJa|a00y

98¢ SNA

8z Bulyoums

¢8¢ d| 1vueil|

08¢ NdA 1SS

ug/z v JonJaga

BG/Z V JOAIBSA

uzol justd

uozl
Juaby Jualo

]

0L wslp

vol
j10MISN

qozl
waby slD

BZ0L JuslD

eozl
waby slD




U.S. Patent Jan. 12, 2016 Sheet 9 of 16 US 9,235,448 B2

Client 102
I user mode 303 |
| |
; 15t Program i
: App 1 App 2 322 !
: App N
é h L k4
3 310a
| interceptor 350 |
; Network | Streaming Client 306 |
El i
: Stack | Coliection Agent 304
| ez _
: [ sSLvPN Agent 308 |
; AP/ data
: sluciure 325 Metwork optimization
anging 250
Accateration Agent 302
Client Agent 120
310
Kernal mode 302

FIG. 3



US 9,235,448 B2

Sheet 10 of 16

Jan. 12, 2016

v Ol NOOL Vo0l
¢3-IAS L 3-IAS q s
e _ _ dooz eouelddy
400z 9oueddy 300z souelddy | ._
| | 39S NOOL Vo0l
NoOL V90l 2Q-ns | | LOIAS
¢d-IAS L 4-IAS
7 ._:\;
A -voL
(shiompoN
O dlS YV 9lIS
000 aduel|ddy — / Y00z &oueljddy
| _ d 3lS _ :
N9O} Vo0l souerdd N9OI Vo0l
CO-IAS LO-IAS m_o_om : _< CV-IAS LV-IAS
NOOL Vo0l
¢d-IAS L g-IAS

U.S. Patent

ZoL
o




US 9,235,448 B2

Sheet 11 of 16

Jan. 12, 2016

U.S. Patent

apou aAB|S

000¢ souelddy

Q9IS

apou aAe|S

g00¢ souelddy

d {lS

d3an

av "Old

vol
ji1omisN

apou Jaysew

V 00g souel|ddy

G/ Z JanIagA

Ol ¥ Jojeinbiuon

Gl OAE[S/IS)SEN

0cv Ayotelsiy aug

Gcy Joingquisip
/GEY S0ElISUI

V 9lS




US 9,235,448 B2

Sheet 12 of 16

Jan. 12, 2016

U.S. Patent

J¥ "OId

Ld4-INS

Fo0zv
uopendByuoy

ZA-IAE LTINS

L-IAS

aons

aogz souelddy

uopeinbyuo)

4 a8
402¥ T3
uonesnByuoy 3 oS
_ 300¢ @ouenddy
400z eauejjddy \
N
<%
Jozy

200Z asueljddy e

_

aozy
uogeinbyuod

VoIS

13-iAS

800z 9oueyddy

g 9js

CH-IANS 1 G-Ing

Y00z 2oueiddy

CY-IAS  LV-IAS

a0cy
uonembyuo)

voiy
uotjemnbyuon




US 9,235,448 B2

Sheet 13 of 16

Jan. 12, 2016

U.S. Patent

ar 'old

4 9US

400z soueljddy

MEP

E S

{3-AS  LTHIAS

300z sauejiddy

ozy
uoneinbyuon

1Q-IAS

aajs

{00z asueyddy

MEP

/ v 9)ig

000z doueiddy

LO~IAg

J 9Us

Q@&s

d3n

900z 2oueyddy

g 9s

¢g-iAg  Lgns

w\v@

Y00z @ouepddy

CY-IAG L YHIAS




US 9,235,448 B2

Sheet 14 of 16

Jan. 12, 2016

U.S. Patent

061 dais

gg{y dals

og{ dais

v8Y dals

28t dals

08{ dais

3¢ 'Old

uoneInbyuod ay}
0] aAIsuodsal suolnpauuod abueyoxs ouaw Bundsosoe jou Jo Bulysiqelss

uoneinByuoo [eslyolelsly als 1S9 oy}

wioJ) uonewwolul plIys 1o/pue justed Aue Buifjnuapl

uoneinByuoo [eslyolelsly als 1S9 oy}

wioJy uonewoyul 19ad Aue Buifinuapl

ABojodo) pue
Jjos Bulfynuapi pue uonelnbiyuod [eslyalelsly aus g1s9 oy bulfidde

uoneinbyuos
[eolyoleIaly 8)IS 1S9O 9y} a)is yoea Jo saoueldde ayy Aq Buiaieoal

uoneinbyuos
[eslyolelaly a)is g1S9 e Buunbyuod pue spou Jajsew e Buifjpuapl




US 9,235,448 B2

Sheet 15 of 16

Jan. 12, 2016

U.S. Patent

apou aAe|S

000¢ souelddy

20zv 10 0z /
uopelnbyuo)

apou aAe|S

g00¢ souelddy

g0¢y 10 02y Y
uopeinbyuo)n

|

VS "Old

apou Jaysew

V 00g souel|ddy

A/ 20zS 9epdn

uopeinbyuo)n

G/ Z JanIagA

vol
ji1omisN

Ol ¥ Jojeinbljuo)

Gl OAE[S/IS)SEN

0z Ayolessly 8)S

GCi 9oel|jUl

G| G Jojeiauab

016 Jojesedwod

40gG 9jepdn
uopeinbyuo)n

NOCS-Y0cZs
YouAg uoneinbiyuod

V 9lS




US 9,235,448 B2

Sheet 16 of 16

Jan. 12, 2016

U.S. Patent

066 dois

8gg dois

0gg dois

QG dois

286G dals

08G dais

g9 'Ol

=

uonelnbyuos paziuolysuAs sy yum Bunelado seoueldde ayj Jo yoes

4

A

aoueldde Bu

Ipuodsaliod ay)

0] S]9S puewiwod uonelnbiyuod ay) Jo yoes BulAidde

4

A

uosLiedw oo ay}

uo paseq seoueldde yoes Joj 19s puellwod uonelnbyuos e Bunelaush

4

A

apou

la)sew ayj Jo uoneInbyuoos ay) 0] su

olleinBlyuos ayy Jo yoes Buuedwod

4

A

soaoueldde Jayjo wouy uoneinbiyuos Buluielqo

4

A

sooueldde Jayjo 01 uibo| pue apou Isjsewl e BuiAjpusapl




US 9,235,448 B2

1
SYSTEMS AND METHODS FOR BATCHABLE
HIERARCHICAL CONFIGURATION

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the file or records of the Patent and
Trademark Office, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The present application generally relates to data commu-
nication networks. In particular, the present application
relates to systems and methods for providing global server
load balancing configuration among a plurality of site appli-
ances.

BACKGROUND OF THE INVENTION

An application delivery controller may act as an interme-
diary between clients and servers. The application delivery
controller may have multiple features for controlling or man-
aging network traffic between the clients and servers. These
features may be configured by an administrators. As the num-
ber of supported features of the application delivery control-
ler grow, the administrator performs or is responsible for
more configuration. As the application delivery controller is
deployed in more, larger and different environments, the use
of'the application delivery controller becomes more complex
as well as its configuration. In many enterprise infrastruc-
tures, multiple controllers may be deployed to handle differ-
ent functionality. Each of these controllers may have a difter-
ent configuration for which the administration maintains. An
administrator of these application delivery controller may be
challenged in configuring or maintaining a configuration of
these controllers in any one or more environments.

BRIEF SUMMARY OF THE INVENTION

The present solution provides a centralized configuration
of'a Global Server Load Balancing (GSLB) site hierarchy that
may be batched across a plurality of appliances in a multi-site
deployment. A single GSLB site hierarchy configuration may
be distributed and operated on each appliance at each site.
This reduces the challenges of maintaining configuration for
the multi-site deployment. Furthermore, in this manner, each
appliance across multiple sites has an understanding of the
entire topology of the multi-site deployment. Responsive to
this configuration and understanding, each appliance may
perform and optimize operations according to the site topol-
ogy. For example, the appliances may selectively determine
which sites to establish connections with in order to share
metrics. In another example, appliances may select which
remote sites to monitor services according to the topology.

In one aspect, the present invention is related to a method
for configuring one or more global server load balancing
(GSLB) appliances and one or more load balancing appli-
ances via a single configuration to represent a GSLB site
hierarchy. The method includes receiving by each appliances
a configuration representing a GSLB site hierarchy. From the
configuration, a first appliances identifies that the first appli-
ance is a first GSLB site providing GSLB in the GSLB site
hierarchy. From the configuration, a second appliance iden-
tifies that the second appliance is providing load balancing for
a plurality of servers at a second site in the GSLB site hier-

10

15

20

25

30

35

40

45

50

55

60

65

2

archy. The second also identifies from the configuration that
the first GSLB site is a parent node in the GSLB site hierarchy
to the second appliance.

In some embodiments, each of the appliances receive the
configuration identifying peer GSLB nodes in the GSLB site
hierarchy. In another embodiments, each of the appliances
receives the configuration identifying one or more child
nodes of one or more sites of the plurality of sites and a parent
node of a GSLB site for each of the one or more sites. In one
embodiment, the first appliance identifies from the configu-
ration one or more peer GSLB sites. In another embodiment,
the second appliance identifies from the configuration one or
more parent nodes in the GSLB site hierarchy that are peer
GSLB sites to the parent node of the second site of the second
appliance. In some embodiments, the second appliance iden-
tifies from the configuration one or more child nodes in the
GSLB site hierarchy that are child nodes to a third site. The
second appliance may identify from the configuration a sec-
ond child node to the parent node of the second appliance.
Responsive to the configuration, the first appliance and sec-
ond appliance may establish a metric exchange connection
between the first appliance and the second appliance. In some
embodiments, the second appliance responsive to the con-
figuration does not accept a request for a metric exchange
connection from a child node in a second site in the plurality
of'sites. In another embodiment, responsive to the configura-
tion, the first appliance and one or more applications that are
peer nodes of the first GSLB site establish a metric exchange
connection between.

In another aspect, the present invention is related to a
system for configuring one or more global server load bal-
ancing (GSLB) appliances and one or more load balancing
appliances via a single configuration to represent a GSLB site
hierarchy. The system includes appliances on one or more
networks. Fach appliance has a configuration interface for
receiving a configuration representing a GSLB site hierarchy.
A first appliance identifies from the received configuration
that the first appliance comprises a first GSLB site providing
GSLB for a plurality of sites in the GSLB site hierarchy. A
second appliance identifies from the received configuration
that the second appliance comprises a second site in the
GSLB site hierarchy that provides load balancing for a plu-
rality of servers at the second. The second appliance also
identified from the received configuration that the first GSLB
site of the first appliance is a parent node in the GSLB site
hierarchy to the second site of the second appliance.

In some embodiments of the system, the configuration
interface of each of the appliances receives the configuration
identifying peer GSLB nodes in the GSLB site hierarchy. In
another embodiment, the configuration interface of each of
the appliances receives the configuration identifying one or
more child nodes of one or more sites of the plurality of sites
and a parent node of a GSLB site for each of the one or more
sites. In one embodiment, the first appliance identifies from
the received configuration one or more peer GSLB sites. In
some embodiments, the second appliance identifies from the
received configuration one or more parent nodes in the GSLB
site hierarchy that are peer GSLB sites to the parent node of
the second site of the second appliance. The second appliance
may also identity from the received configuration one or more
child nodes in the GSLB site hierarchy that are child nodes to
athird site. In some embodiments, the second appliance iden-
tifies from the received configuration a second child node to
the parent node of the second appliance.

The first appliance and the second appliance may establish
responsive to the configuration, a metric exchange connec-
tion between the first appliance and the second appliance. The



US 9,235,448 B2

3

second appliance responsive to the configuration may not
accept a request for a metric exchange connection from a
child node in a second site in the plurality of sites. In some
embodiments, the first appliance and one or more appliances
that are peer nodes of the first GSLB site may establish a
metric exchange connection between responsive to the con-
figuration

The details of various embodiments of the invention are set
forth in the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a network
environment for a client to access a server via an appliance;

FIG. 1B is a block diagram of an embodiment of an envi-
ronment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via a plurality of appliances;

FIG. 1D is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via;

FIGS. 1E and 1F are block diagrams of embodiments of a
computing device;

FIG. 2A is a block diagram of an embodiment of an appli-
ance for processing communications between a client and a
server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4A is a block diagram of an embodiment of an envi-
ronment of a multi-site deployment of appliances;

FIG. 4B is a block diagram of an embodiment of an appli-
ance supporting batchable and hierarchical configuration for
a multi-site deployment;

FIG. 4C is a block diagram of an embodiment of another
embodiment of configurations and communications in one
embodiment of a multi-site deployment;

FIG. 4D is a block diagram of an embodiment of an
embodiment of configurations and communications in an
embodiment of a multi-site deployment using the batchable
and hierarchical configuration;

FIG. 4E is a flow diagram of an embodiment of steps of a
method for configuring appliances of a multi-site deployment
via a batchable and hierarchical configuration;

FIG. 5A is a block diagram of an embodiment of an appli-
ance for synchronizing configurations among appliances; and

FIG. 5B is a flow diagram of an embodiment of steps of a
method for synchronizing configurations among appliances.

The features and advantages of the present invention will
become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate identical, functionally similar, and/or structur-
ally similar elements.

5

10

15

20

30

40

45

50

55

60

o

5

4
DETAILED DESCRIPTION OF THE INVENTION

For purposes of reading the description of the various
embodiments below, the following descriptions of the sec-
tions of the specification and their respective contents may be
helpful:

Section A describes a network environment and computing
environment which may be useful for practicing
embodiments described herein;

Section B describes embodiments of systems and methods
for delivering a computing environment to a remote
user;

Section C describes embodiments of systems and methods
for accelerating communications between a client and a
server;

Section D describes systems and method of providing a
Global Server Load Balancing (GSLB) batchable and
hierarchical configuration among a plurality of sites;

Section E describes systems and method of providing auto-
matic synchronization of Global Server [.oad Balancing
(GSLB) configuration among a plurality of appliances.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring now
to FIG. 1A, an embodiment of a network environment is
depicted. In brief overview, the network environment com-
prises one or more clients 102a-102z (also generally referred
to as local machine(s) 102, or client(s) 102) in communica-
tion with one or more servers 106a-106n (also generally
referred to as server(s) 106, or remote machine(s) 106) via
one or more networks 104, 104' (generally referred to as
network 104). In some embodiments, a client 102 communi-
cates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network 104'
between the clients 102 and the servers 106, the clients 102
and the servers 106 may be on the same network 104. The
networks 104 and 104' can be the same type of network or
different types of networks. The network 104 and/or the net-
work 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a private
network and network 104 may be a public network. In some
embodiments, network 104 may be a private network and
network 104" a public network. In another embodiment, net-
works 104 and 104' may both be private networks. In some
embodiments, clients 102 may be located at a branch office of
a corporate enterprise communicating viaa WAN connection
over the network 104 to the servers 106 located at a corporate
data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to point
network, a broadcast network, a wide area network, a local
area network, a telecommunications network, a data commu-
nication network, a computer network, an ATM (Asynchro-
nous Transfer Mode) network, a SONET (Synchronous Opti-
cal Network) network, a SDH (Synchronous Digital
Hierarchy) network, a wireless network and a wireline net-
work. In some embodiments, the network 104 may comprise
a wireless link, such as an infrared channel or satellite band.
The topology of the network 104 and/or 104' may be a bus,
star, or ring network topology. The network 104 and/or 104'
and network topology may be of any such network or network
topology as known to those ordinarily skilled in the art
capable of supporting the operations described herein.



US 9,235,448 B2

5

As shownin FIG. 1A, the appliance 200, which also may be
referred to as an interface unit 200 or gateway 200, is shown
between the networks 104 and 104'. In some embodiments,
the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104'. For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104'. In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106
on the same or different network 104,104 as the client 102.
One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.

In some embodiments, the appliance 200 comprises any of
the network devices manufactured by Citrix Systems, Inc. of
Ft. Lauderdale Fla., referred to as Citrix NetScaler devices. In
other embodiments, the appliance 200 includes any of the
product embodiments referred to as WebAccelerator and
BigIP manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
DX acceleration device platforms and/or the SSI. VPN series
of devices, such as SA 700, SA 2000, SA 4000, and SA 6000
devices manufactured by Juniper Networks, Inc. of Sunny-
vale, Calif. In yet another embodiment, the appliance 200
includes any application acceleration and/or security related
appliances and/or software manufactured by Cisco Systems,
Inc. of San Jose, Calif., such as the Cisco ACE Application
Control Engine Module service software and network mod-
ules, and Cisco AVS Series Application Velocity System.

In one embodiment, the system may include multiple, logi-
cally-grouped servers 106. In these embodiments, the logical
group of servers may be referred to as a server farm 38. In
some of these embodiments, the serves 106 may be geo-
graphically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. Inone
embodiment, the server farm executes one or more applica-
tions on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heterogeneous.
One or more of the servers 106 can operate according to one
type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Wash.), while
one or more of the other servers 106 can operate on according
to another type of operating system platform (e.g., Unix or
Linux). The servers 106 of each farm 38 do not need to be
physically proximate to another server 106 in the same farm
38. Thus, the group of servers 106 logically grouped as a farm
38 may be interconnected using a wide-area network (WAN)
connection or medium-area network (MAN) connection. For
example, a farm 38 may include servers 106 physically
located in different continents or different regions of a conti-
nent, country, state, city, campus, or room. Data transmission
speeds between servers 106 in the farm 38 can be increased if
the servers 106 are connected using a local-area network
(LAN) connection or some form of direct connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to function
as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102

20

25

40

45

50

60

6

has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communicates
directly with one of the servers 106 in a farm 38. In another
embodiment, the client 102 executes a program neighbor-
hood application to communicate with a server 106 in a farm
38. In still another embodiment, the server 106 provides the
functionality of a master node. In some embodiments, the
client 102 communicates with the server 106 in the farm 38
through a network 104. Over the network 104, the client 102
can, for example, request execution of various applications
hosted by the servers 106a-1067 in the farm 38 and receive
output of the results of the application execution for display.
In some embodiments, only the master node provides the
functionality required to identify and provide address infor-
mation associated with a server 106' hosting a requested
application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests to
asecond server 1065 and responds to the request by the client
102 with a response to the request from the server 1065. In
still another embodiment, the server 106 acquires an enu-
meration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
such as display data, generated by an execution of the iden-
tified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104'. For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200" at a data
center. In another embodiment, the first appliance 200 and
second appliance 200" are deployed on the same network 104
or network 104. For example, a first appliance 200 may be
deployed for a first server farm 38, and a second appliance
200 may be deployed for a second server farm 38'. In another
example, a first appliance 200 may be deployed at a first
branch office while the second appliance 200" is deployed at a
second branch office’. In some embodiments, the first appli-
ance 200 and second appliance 200" work in cooperation or in
conjunction with each other to accelerate network traffic or
the delivery of application and data between a client and a
server

Referring now to FIG. 1C, another embodiment of a net-
work environment deploying the appliance 200 with one or
more other types of appliances, such as between one or more
WAN optimization appliance 205, 205' is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and s second WAN optimi-
zation appliance 205' may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi-
zation appliance 205' at a data center. In some embodiments,
the appliance 205 may be located on network 104'. In other
embodiments, the appliance 205' may be located on network



US 9,235,448 B2

7

104. In some embodiments, the appliance 205' may be located
on network 104' or network 104". In one embodiment, the
appliance 205 and 205' are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization
appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38'

In one embodiment, the appliance 205 is a device for accel-
erating, optimizing or otherwise improving the performance,
operation, or quality of service of any type and form of
network traffic, such as traffic to and/or from a WAN connec-
tion. In some embodiments, the appliance 205 is a perfor-
mance enhancing proxy. In other embodiments, the appliance
205 is any type and form of WAN optimization or acceleration
device, sometimes also referred to as a WAN optimization
controller. In one embodiment, the appliance 205 is any of the
product embodiments referred to as WANScaler manufac-
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. In other
embodiments, the appliance 205 includes any of the product
embodiments referred to as BIG-IP link controller and WAN-
jet manufactured by F5 Networks, Inc. of Seattle, Wash. In
another embodiment, the appliance 205 includes any of the
WX and WXC WAN acceleration device platforms manufac-
tured by Juniper Networks, Inc. of Sunnyvale, Calif. In some
embodiments, the appliance 205 includes any of the steelhead
line of WAN optimization appliances manufactured by River-
bed Technology of San Francisco, Calif. In other embodi-
ments, the appliance 205 includes any of the WAN related
devices manufactured by Expand Networks Inc. of Roseland,
N.J. In one embodiment, the appliance 205 includes any of
the WAN related appliances manufactured by Packeteer Inc.
of Cupertino, Calif., such as the PacketShaper, iShared, and
SkyX product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide Area
Network Application Services software and network mod-
ules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides application
and data acceleration services for branch-office or remote
offices. In one embodiment, the appliance 205 includes opti-
mization of Wide Area File Services (WAFS). In another
embodiment, the appliance 205 accelerates the delivery of
files, such as via the Common Internet File System (CIFS)
protocol. In other embodiments, the appliance 205 provides
caching in memory and/or storage to accelerate delivery of
applications and data. In one embodiment, the appliance 205
provides compression of network traffic at any level of the
network stack or at any protocol or network layer. In another
embodiment, the appliance 205 provides transport layer pro-
tocol optimizations, flow control, performance enhancements
or modifications and/or management to accelerate delivery of
applications and data over a WAN connection. For example,
in one embodiment, the appliance 205 provides Transport
Control Protocol (TCP) optimizations. In other embodi-
ments, the appliance 205 provides optimizations, flow con-
trol, performance enhancements or modifications and/or
management for any session or application layer protocol.

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network packet
to announce presence, functionality or capability to another
appliance 205'. In another embodiment, an appliance 205'
may communicate with another appliance 205" using data
encoded in both TCP and/or IP header fields or options. For
example, the appliance may use TCP option(s) or IP header

35

40

45

8

fields or options to communicate one or more parameters to
be used by the appliances 205, 205' in performing function-
ality, such as WAN acceleration, or for working in conjunc-
tion with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a trans-
port layer connection traversing the appliance 200, such as a
transport layer connection from between a client and a server
traversing appliances 205 and 205'. In one embodiment, the
appliance 200 identifies and preserves any encoded informa-
tion in a transport layer packet transmitted by a first appliance
205 via a first transport layer connection and communicates a
transport layer packet with the encoded information to a
second appliance 205' via a second transport layer connec-
tion.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104" and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ-
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates deliv-
ery of a computing environment 15, or any portion thereof, to
a client 102. In one embodiment, the appliance 200 acceler-
ates the delivery of the computing environment 15 by the
application delivery system 190. For example, the embodi-
ments described herein may be used to accelerate delivery of
a streaming application and data file processable by the appli-
cation from a central corporate data center to a remote user
location, such as a branch office of the company. In another
embodiment, the appliance 200 accelerates transport layer
traffic between a client 102 and a server 106. The appliance
200 may provide acceleration techniques for accelerating any
transport layer payload from a server 106 to a client 102, such
as: 1) transport layer connection pooling, 2) transport layer
connection multiplexing, 3) transport control protocol buft-
ering, 4) compression and 5) caching. In some embodiments,
the appliance 200 provides load balancing of servers 106 in
responding to requests from clients 102. In other embodi-
ments, the appliance 200 acts as a proxy or access server to
provide access to the one or more servers 106. In another
embodiment, the appliance 200 provides a secure virtual pri-
vate network connection from a first network 104 of the client
102 to the second network 104' of the server 106, such as an
SSL VPN connection. It yet other embodiments, the appli-
ance 200 provides application firewall security, control and
management of the connection and communications between
a client 102 and a server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution meth-
ods and based on any authentication and authorization poli-
cies applied via a policy engine 195. With these techniques, a
remote user may obtain a computing environment and access



US 9,235,448 B2

9

to server stored applications and data files from any network
connected device 100. In one embodiment, the application
delivery system 190 may reside or execute on a server 106. In
another embodiment, the application delivery system 190
may reside or execute on a plurality of servers 106a-106#. In
some embodiments, the application delivery system 190 may
execute in a server farm 38. In one embodiment, the server
106 executing the application delivery system 190 may also
store or provide the application and data file. In another
embodiment, a first set of one or more servers 106 may
execute the application delivery system 190, and a different
server 1067 may store or provide the application and data file.
In some embodiments, each of the application delivery sys-
tem 190, the application, and data file may reside or be located
on different servers. In yet another embodiment, any portion
of'the application delivery system 190 may reside, execute or
be stored on or distributed to the appliance 200, or a plurality
of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200 may
request an application and data file from the server 106. In one
embodiment, the appliance 200 may forward a request from
the client 102 to the server 106. For example, the client 102
may not have the application and data file stored or accessible
locally. In response to the request, the application delivery
system 190 and/or server 106 may deliver the application and
data file to the client 102. For example, in one embodiment,
the server 106 may transmit the application as an application
stream to operate in computing environment 15 on client 102.

In some embodiments, the application delivery system 190
comprises any portion of the Citrix Access Suite™ by Citrix
Systems, Inc., such as the MetaFrame or Citrix Presentation
Server™ and/or any of the Microsoft® Windows Terminal
Services manufactured by the Microsoft Corporation. In one
embodiment, the application delivery system 190 may deliver
one or more applications to clients 102 or users via a remote-
display protocol or otherwise via remote-based or server-
based computing. In another embodiment, the application
delivery system 190 may deliver one or more applications to
clients or users via steaming of the application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing the
access to, selection of application execution methods and the
delivery of applications. In some embodiments, the policy
engine 195 determines the one or more applications a user or
client 102 may access. In another embodiment, the policy
engine 195 determines how the application should be deliv-
ered to the user or client 102, e.g., the method of execution. In
some embodiments, the application delivery system 190 pro-
vides a plurality of delivery techniques from which to select a
method of application execution, such as a server-based com-
puting, streaming or delivering the application locally to the
client 120 for local execution.

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi-
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut-

20

30

35

40

45

50

55

10

ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli-
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica-
tion to stream the application via the network 104 to the client
102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client 102
on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica-
tion related to real-time data communications, such as appli-
cations for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an appli-
cation providing a thin-client computing or remote display
presentation application. In one embodiment, the server 106
or server farm 38 executes as an application, any portion of
the Citrix Access Suite™ by Citrix Systems, Inc., such as the
MetaFrame or Citrix Presentation Server™, and/or any of the
Microsoft® Windows Terminal Services manufactured by
the Microsoft Corporation. In one embodiment, the applica-
tion is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar-
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeeting™ provided by
Citrix Online Division, Inc. of Santa Barbara, Calif.,
WebEx™ provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor-
poration of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106 A may include any type and form per-
formance monitoring service 198. The performance monitor-
ing service 198 may include monitoring, measurement and/or
management software and/or hardware, including data col-
lection, aggregation, analysis, management and reporting. In



US 9,235,448 B2

11

one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of script,
such as Visual Basic script, or Javascript. In one embodiment,
the monitoring agent 197 executes transparently to any appli-
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the
monitoring agent 197 is installed and operated without any
instrumentation for the application or device.

In some embodiments, the monitoring agent 197 monitors,
measures and collects data on a predetermined frequency. In
other embodiments, the monitoring agent 197 monitors, mea-
sures and collects data based upon detection of any type and
form of event. For example, the monitoring agent 197 may
collect data upon detection of a request for a web page or
receipt of an HTTP response. In another example, the moni-
toring agent 197 may collect data upon detection of any user
input events, such as a mouse click. The monitoring agent 197
may report or provide any monitored, measured or collected
data to the monitoring service 198. In one embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 according to a schedule or a predetermined fre-
quency. In another embodiment, the monitoring agent 197
transmits information to the monitoring service 198 upon
detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc-
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi-
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP con-
nection. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures network
latency. In yet one embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures band-
width utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring ser-
vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor-
ing and performance measurement of any session or connec-
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea-
sures performance of a browser. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. Inyet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor-
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni-

10

15

20

25

30

35

40

45

50

55

60

65

12

toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv-
ery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as appli-
ance 200 and/or appliance 205. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of delivery of a virtualized
application. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu-
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service 198
and/or monitoring agent 197 may monitor, measure and man-
age the performance of the delivery of applications via the
Citrix Presentation Server. In this example, the monitoring
service 198 and/or monitoring agent 197 monitors individual
ICA sessions. The monitoring service 198 and/or monitoring
agent 197 may measure the total and per session system
resource usage, as well as application and networking perfor-
mance. The monitoring service 198 and/or monitoring agent
197 may identity the active servers for a given user and/or
user session. In some embodiments, the monitoring service
198 and/or monitoring agent 197 monitors back-end connec-
tions between the application delivery system 190 and an
application and/or database server. The monitoring service
198 and/or monitoring agent 197 may measure network
latency, delay and volume per user-session or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total memory
usage, per user session and/or per process. In other embodi-
ments, the monitoring service 198 and/or monitoring agent
197 measures and monitors CPU usage the application deliv-
ery system 190, such as total CPU usage, per user session
and/or per process. In another embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-
tors the time required to log-in to an application, a server, or
the application delivery system, such as Citrix Presentation
Server. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 measures and monitors the duration
auser is logged into an application, a server, or the application
delivery system 190. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 measures and moni-



US 9,235,448 B2

13

tors active and inactive session counts for an application,
server or application delivery system session. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea-
sures and monitors any type and form of server metrics. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to system
memory, CPU usage, and disk storage. In another embodi-
ment, the monitoring service 198 and/or monitoring agent
197 measures and monitors metrics related to page faults,
such as page faults per second. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 mea-
sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica-
tion crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi-
ments referred to as EdgeSight manufactured by Citrix Sys-
tems, Inc. of Ft. Lauderdale, Fla. In another embodiment, the
performance monitoring service 198 and/or monitoring agent
198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by the
Symphoniq Corporation of Palo Alto, Calif.

In one embodiment, the performance monitoring service
198 and/or monitoring agent 198 includes any portion of the
product embodiments referred to as the Teal.eaf CX product
suite manufactured by the Teal.eaf Technology Inc. of San
Francisco, Calif. In other embodiments, the performance
monitoring service 198 and/or monitoring agent 198 includes
any portion of the business service management products,
such as the BMC Performance Manager and Patrol products,
manufactured by BMC Software, Inc. of Houston, Tex.

The client 102, server 106, and appliance 200 may be
deployed as and/or executed on any type and form of com-
puting device, such as a computer, network device or appli-
ance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102,
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi-
tional optional elements, such as one or more input/output
devices 130a-1306 (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process-
ing unit is provided by a microprocessor unit, such as: those
manufactured by Intel Corporation of Mountain View, Calif;
those manufactured by Motorola Corporation of Schaum-
burg, Il1.; those manufactured by Transmeta Corporation of
Santa Clara, Calif.; the RS/6000 processor, those manufac-
tured by International Business Machines of White Plains,
N.Y.; or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 100 may be based on
any of these processors, or any other processor capable of
operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to

25

30

40

45

65

14

bedirectly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch-
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM). The main memory 122 may be
based on any of the above described memory chips, or any
other available memory chips capable of operating as
described herein. In the embodiment shown in FIG. 1E, the
processor 101 communicates with main memory 122 via a
system bus 150 (described in more detail below). FIG. 1E
depicts an embodiment of a computing device 100 in which
the processor communicates directly with main memory 122
via a memory port 103. For example, in FIG. 1F the main
memory 122 may be DRDRAM.

FIG. 1F depicts an embodiment in which the main proces-
sor 101 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 101 communicates
with cache memory 140 using the system bus 150. Cache
memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or
EDRAM. In the embodiment shown in FI1G. 1E, the processor
101 communicates with various I/O devices 130 via a local
system bus 150. Various busses may be used to connect the
central processing unit 101 to any of the I/O devices 130,
including a VESA VL bus, an ISA bus, an EISA bus, a
MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X
bus, a PCI-Express bus, or a NuBus. For embodiments in
which the /O device is a video display 124, the processor 101
may use an Advanced Graphics Port (AGP) to communicate
with the display 124. FIG. 1F depicts an embodiment of a
computer 100 in which the main processor 101 communi-
cates directly with /O device 130 via HyperTransport, Rapid
1/0, or InfiniBand. FIG. 1F also depicts an embodiment in
which local busses and direct communication are mixed: the
processor 101 communicates with I/O device 130 using a
local interconnect bus while communicating with I/O device
130 directly.

The computing device 100 may support any suitable instal-
lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard-drive or any
other device suitable for installing software and programs
such as any client agent 120, or portion thereof. The comput-
ing device 100 may further comprise a storage device 128,
such as one or more hard disk drives or redundant arrays of
independent disks, for storing an operating system and other
related software, and for storing application software pro-
grams such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIX®, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri-
bution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard



US 9,235,448 B2

15

telephone lines, LAN or WAN links (e.g., 802.11, T1, T3, 56
kb, X.25), broadband connections (e.g., ISDN, Frame Relay,
ATM), wireless connections, or some combination of any or
all of the above. The network interface 118 may comprise a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or any other device
suitable for interfacing the computing device 100 to any type
of network capable of communication and performing the
operations described herein.

A wide variety of /O devices 130a-1302 may be present in
the computing device 100. Input devices include keyboards,
mice, trackpads, trackballs, microphones, and drawing tab-
lets. Output devices include video displays, speakers, inkjet
printers, laser printers, and dye-sublimation printers. The I/O
devices 130 may be controlled by an I/O controller 123 as
shown in FIG. 1E. The I/O controller may control one or more
1/O devices such as a keyboard 126 and a pointing device 127,
e.g., amouse or optical pen. Furthermore, an /O device may
also provide storage 128 and/or an installation medium 116
for the computing device 100. In still other embodiments, the
computing device 100 may provide USB connections to
receive handheld USB storage devices such as the USB Flash
Drive line of devices manufactured by Twintech Industry, Inc.
of Los Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
124n, which each may be of the same or different type and/or
form. As such, any of the 1/O devices 130a-130% and/or the
1/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and
use of multiple display devices 124a-124r by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124x. In one embodi-
ment, a video adapter may comprise multiple connectors to
interface to multiple display devices 124a-124n. In other
embodiments, the computing device 100 may include mul-
tiple video adapters, with each video adapter connected to one
or more of the display devices 124a-124#. In some embodi-
ments, any portion of the operating system of the computing
device 100 may be configured for using multiple displays
124a-124p. In other embodiments, one or more of the display
devices 124a-124n may be provided by one or more other
computing devices, such as computing devices 100a and
1005 connected to the computing device 100, for example,
via a network. These embodiments may include any type of
software designed and constructed to use another computer’s
display device as a second display device 124a for the com-
puting device 100. One ordinarily skilled in the art will rec-
ognize and appreciate the various ways and embodiments that
a computing device 100 may be configured to have multiple
display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge
170 between the system bus 150 and an external communi-
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Giga-
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.

A computing device 100 of the sort depicted in FIGS. 1E
and 1F typically operate under the control of operating sys-
tems, which control scheduling of tasks and access to system

10

20

25

30

40

45

55

16

resources. The computing device 100 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases ofthe Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any real-time operating system, any open
source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi-
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely-
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating system, among others.

In other embodiments, the computing device 100 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computer 100 is a Treo 180, 270, 1060, 600 or 650 smart
phone manufactured by Palm, Inc. In this embodiment, the
Treo smart phone is operated under the control of the PalmOS
operating system and includes a stylus input device as well as
a five-way navigator device. Moreover, the computing device
100 can be any workstation, desktop computer, laptop or
notebook computer, server, handheld computer, mobile tele-
phone, any other computer, or other form of computing or
telecommunications device that is capable of communication
and that has sufficient processor power and memory capacity
to perform the operations described herein.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli-
ance 200. The architecture of the appliance 200 in FIG. 2A is
provided by way of illustration only and is not intended to be
limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also pro-
vides the structures and elements which allow programs and
services within kernel space 204 and user space 202 to com-
municate data both internally and externally with respect to
appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing software pro-
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform-
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com-
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of'the processors 101 described above in connec-
tion with FIGS. 1E and 1F. In some embodiments, the central
processing unit 262 may perform the functions of the encryp-
tion processor 260 in a single processor. Additionally, the
hardware layer 206 may comprise multiple processors for
each of' the processing unit 262 and the encryption processor
260. For example, in one embodiment, the appliance 200



US 9,235,448 B2

17

comprises a first processor 262 and a second processor 262'.
In other embodiments, the processor 262 or 262' comprises a
multi-core processor.

Although the hardware layer 206 of appliance 200 is gen-
erally illustrated with an encryption processor 260, processor
260 may be a processor for performing functions related to
any encryption protocol, such as the Secure Socket Layer
(SSL) or Transport Layer Security (TLS) protocol. In some
embodiments, the processor 260 may be a general purpose
processor (GPP), and in further embodiments, may be have
executable instructions for performing processing of any
security related protocol.

Although the hardware layer 206 of appliance 200 is illus-
trated with certain elements in FIG. 2, the hardware portions
or components of appliance 200 may comprise any type and
form of elements, hardware or software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
some embodiments, the appliance 200 may comprise a server,
gateway, router, switch, bridge or other type of computing or
network device, and have any hardware and/or software ele-
ments associated therewith.

The operating system of appliance 200 allocates, manages,
or otherwise segregates the available system memory into
kernel space 204 and user space 204. In example software
architecture 200, the operating system may be any type and/or
form of Unix operating system although the invention is not
so limited. As such, the appliance 200 can be running any
operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OS® for Macintosh computers, any embedded
operating system, any network operating system, any real-
time operating system, any open source operating system, any
proprietary operating system, any operating systems for
mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and
performing the operations described herein.

The kernel space 204 is reserved for running the kernel
230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and pro-
vides access, control, and management of resources and hard-
ware-related elements of the application 104. In accordance
with an embodiment of the appliance 200, the kernel space
204 also includes a number of network services or processes
working in conjunction with a cache manager 232, sometimes
also referred to as the integrated cache, the benefits of which
are described in detail further herein. Additionally, the
embodiment of the kernel 230 will depend on the embodi-
ment of the operating system installed, configured, or other-
wise used by the device 200.

In one embodiment, the device 200 comprises one network
stack 267, such as a TCP/IP based stack, for communicating
with the client 102 and/or the server 106. In one embodiment,
the network stack 267 is used to communicate with a first
network, such as network 108, and a second network 110. In
some embodiments, the device 200 terminates a first transport
layer connection, such as a TCP connection of a client 102,
and establishes a second transport layer connection to a server
106 for use by the client 102, e.g., the second transport layer
connection is terminated at the appliance 200 and the server
106. The first and second transport layer connections may be
established via a single network stack 267. In other embodi-
ments, the device 200 may comprise multiple network stacks,
for example 267 and 267", and the first transport layer con-
nection may be established or terminated at one network stack

10

15

20

25

30

35

40

45

50

55

60

65

18

267, and the second transport layer connection on the second
network stack 267'. For example, one network stack may be
for receiving and transmitting network packet on a first net-
work, and another network stack for receiving and transmit-
ting network packets on a second network. In one embodi-
ment, the network stack 267 comprises a buffer 243 for
queuing one or more network packets for transmission by the
appliance 200.

As shown in FIG. 2, the kernel space 204 includes the cache
manager 232, a high-speed layer 2-7 integrated packet engine
240, an encryption engine 234, apolicy engine 236 and multi-
protocol compression logic 238. Running these components
or processes 232, 240, 234, 236 and 238 in kernel space 204
or kernel mode instead of the user space 202 improves the
performance of each of these components, alone and in com-
bination. Kernel operation means that these components or
processes 232, 240, 234, 236 and 238 run in the core address
space of the operating system of the device 200. For example,
running the encryption engine 234 in kernel mode improves
encryption performance by moving encryption and decryp-
tion operations to the kernel, thereby reducing the number of
transitions between the memory space or a kernel thread in
kernel mode and the memory space or a thread in user mode.
For example, data obtained in kernel mode may not need to be
passed or copied to a process or thread running in user mode,
such as from a kernel level data structure to a user level data
structure. In another aspect, the number of context switches
between kernel mode and user mode are also reduced. Addi-
tionally, synchronization of and communications between
any of the components or processes 232, 240, 235, 236 and
238 can be performed more efficiently in the kernel space
204.

In some embodiments, any portion of the components 232,
240, 234, 236 and 238 may run or operate in the kernel space
204, while other portions of these components 232, 240, 234,
236 and 238 may run or operate in user space 202. In one
embodiment, the appliance 200 uses a kernel-level data struc-
ture providing access to any portion of one or more network
packets, for example, a network packet comprising a request
from a client 102 or a response from a server 106. In some
embodiments, the kernel-level data structure may be obtained
by the packet engine 240 via a transport layer driver interface
or filter to the network stack 267. The kernel-level data struc-
ture may comprise any interface and/or data accessible viathe
kernel space 204 related to the network stack 267, network
traffic or packets received or transmitted by the network stack
267. In other embodiments, the kernel-level data structure
may be used by any of the components or processes 232, 240,
234, 236 and 238 to perform the desired operation of the
component or process. In one embodiment, a component 232,
240, 234, 236 and 238 is running in kernel mode 204 when
using the kernel-level data structure, while in another
embodiment, the component 232, 240, 234, 236 and 238 is
running in user mode when using the kernel-level data struc-
ture. In some embodiments, the kernel-level data structure
may be copied or passed to a second kernel-level data struc-
ture, or any desired user-level data structure.

The cache manager 232 may comprise software, hardware
or any combination of software and hardware to provide
cache access, control and management of any type and form
of content, such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in



US 9,235,448 B2

19

which the original data may require longer access time to
fetch, compute or otherwise obtain relative to reading a cache
memory element. Once the data is stored in the cache memory
element, future use can be made by accessing the cached copy
rather than refetching or recomputing the original data,
thereby reducing the access time. In some embodiments, the
cache memory element may comprise a data object in
memory 264 of device 200. In other embodiments, the cache
memory element may comprise memory having a faster
access time than memory 264. In another embodiment, the
cache memory element may comprise any type and form of
storage element of the device 200, such as a portion of a hard
disk. In some embodiments, the processing unit 262 may
provide cache memory for use by the cache manager 232. In
yet further embodiments, the cache manager 232 may use any
portion and combination of memory, storage, or the process-
ing unit for caching data, objects, and other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function-
ality to invalidate objects based on the expiration of an invali-
dation time period or upon receipt of an invalidation com-
mand from a client 102 or server 106. In some embodiments,
the cache manager 232 may operate as a program, service,
process or task executing in the kernel space 204, and in other
embodiments, in the user space 202. In one embodiment, a
first portion of the cache manager 232 executes in the user
space 202 while a second portion executes in the kernel space
204. In some embodiments, the cache manager 232 can com-
prise any type of general purpose processor (GPP), or any
other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica-
tion(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow a user to identifying,
specify, define or configure a caching policy. Policy engine
236, in some embodiments, also has access to memory to
support data structures such as lookup tables or hash tables to
enable user-selected caching policy decisions. In other
embodiments, the policy engine 236 may comprise any logic,
rules, functions or operations to determine and provide
access, control and management of objects, data or content
being cached by the appliance 200 in addition to access,
control and management of security, network traffic, network
access, compression or any other function or operation per-
formed by the appliance 200. Further examples of specific
caching policies are further described herein.

The encryption engine 234 comprises any logic, business
rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryption
engine 234 may also setup or establish SSL or TLS connec-
tions on behalf of the client 102a-102x, server 106a-106#, or
appliance 200. As such, the encryption engine 234 provides
offloading and acceleration of SSL. processing. In one
embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a client
1024a-102# and a server 1064-1067. In some embodiments,
the encryption engine 234 is in communication with the
Encryption processor 260. In other embodiments, the encryp-
tion engine 234 comprises executable instructions running on
the Encryption processor 260.

25

30

40

45

50

55

20

The multi-protocol compression engine 238 comprises any
logic, business rules, function or operations for compressing
one or more protocols of a network packet, such as any of the
protocols used by the network stack 267 of the device 200. In
one embodiment, multi-protocol compression engine 238
compresses bi-directionally between clients 102a-102% and
servers 106a-106n any TCP/IP based protocol, including
Messaging Application Programming Interface (MAPI)
(email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) pro-
tocol (file transfer), Independent Computing Architecture
(ICA) protocol, Remote Desktop Protocol (RDP), Wireless
Application Protocol (WAP), Mobile IP protocol, and Voice
Over IP (VoIP) protocol. In other embodiments, multi-proto-
col compression engine 238 provides compression of Hyper-
text Markup Language (HTML) based protocols and in some
embodiments, provides compression of any markup lan-
guages, such as the Extensible Markup Language (XML). In
one embodiment, the multi-protocol compression engine 238
provides compression of any high-performance protocol,
such as any protocol designed for appliance 200 to appliance
200 communications. In another embodiment, the multi-pro-
tocol compression engine 238 compresses any payload of or
any communication using a modified transport control pro-
tocol, such as Transaction TCP (T/TCP), TCP with selection
acknowledgements (TCP-SACK), TCP with large windows
(TCP-LW), acongestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238 accel-
erates performance for users accessing applications via desk-
top clients, e.g., Microsoft Outlook and non-Web thin clients,
such as any client launched by popular enterprise applications
like Oracle, SAP and Siebel, and even mobile clients, such as
the Pocket PC. In some embodiments, the multi-protocol
compression engine 238 by executing in the kernel mode 204
and integrating with packet processing engine 240 accessing
the network stack 267 is able to compress any of the protocols
carried by the TCP/IP protocol, such as any application layer
protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level process-
ing of packets received and transmitted by appliance 200 via
network ports 266. The high speed layer 2-7 integrated packet
engine 240 may comprise a buffer for queuing one or more
network packets during processing, such as for receipt of a
network packet or transmission of a network packer. Addi-
tionally, the high speed layer 2-7 integrated packet engine 240
is in communication with one or more network stacks 267 to
send and receive network packets via network ports 266. The
high speed layer 2-7 integrated packet engine 240 works in
conjunction with encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238.
In particular, encryption engine 234 is configured to perform
SSL processing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content switching and request-level cache redi-
rection, and multi-protocol compression logic 238 is config-
ured to perform functions related to compression and decom-
pression of data.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, i.e., received,
or outgoing, i.e., transmitted, network packets. In some
embodiments, the high speed layer 2-7 integrated packet
engine 240 processes network packets responsive to the timer



US 9,235,448 B2

21

242. The packet processing timer 242 provides any type and
form of signal to the packet engine 240 to notify, trigger, or
communicate a time related event, interval or occurrence. In
many embodiments, the packet processing timer 242 operates
in the order of milliseconds, such as for example 100 ms, 50
ms or 25 ms. For example, in some embodiments, the packet
processing timer 242 provides time intervals or otherwise
causes a network packet to be processed by the high speed
layer 2-7 integrated packet engine 240 at a 10 ms time inter-
val, while in other embodiments, at a 5 ms time interval, and
still yet in further embodiments, as shortasa 3,2, or 1 ms time
interval. The high speed layer 2-7 integrated packet engine
240 may be interfaced, integrated or in communication with
the encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression engine 238 during
operation. As such, any of the logic, functions, or operations
of the encryption engine 234, cache manager 232, policy
engine 236 and multi-protocol compression logic 238 may be
performed responsive to the packet processing timer 242
and/or the packet engine 240. Therefore, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres-
sion logic 238 may be performed at the granularity of time
intervals provided via the packet processing timer 242, for
example, at a time interval of less than or equal to 10 ms. For
example, in one embodiment, the cache manager 232 may
perform invalidation of any cached objects responsive to the
high speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to the
same order of granularity as the time interval of the packet
processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG. 2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide ameans by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200 and
either is user space 202 or kernel space 204. The GUI 210 may
be any type and form of graphical user interface and may be
presented via text, graphical or otherwise, by any type of
program or application, such as a browser. The CLI 212 may
be any type and form of command line or text-based interface,
such as acommand line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tesh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc-
tions to support interaction with the appliance 200 or operat-
ing system by a user via the GUI 210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning prop-
erly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.
In other embodiments, the health monitoring program 216

10

15

20

25

30

35

40

45

50

55

60

65

22

interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter-
mine any condition, status or error with any portion of the
appliance 200.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or pro-
cesses, such as another daemon service 218 as appropriate. As
known to those skilled in the art, a daemon service 218 may
run unattended to perform continuous or periodic system
wide functions, such as network control, or to perform any
desired task. In some embodiments, one or more daemon
services 218 run in the user space 202, while in other embodi-
ments, one or more daemon services 218 run in the kernel
space.

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function-
ality or operations: SSL. VPN connectivity 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu-
nications between one or more clients 102 and one or more
servers 106. Each of the servers 106 may provide one or more
network related services 270a-270n (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other-
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera-
tions of the appliance 200.

The vServer 275 may comprise software, hardware or any
combination of software and hardware. The vServer 275 may
comprise any type and form of program, service, task, process
or executable instructions operating in user mode 202, kernel
mode 204 or any combination thereof in the appliance 200.
The vServer 275 includes any logic, functions, rules, or
operations to perform any embodiments of the techniques
described herein, such as SSL. VPN 280, switching/load bal-
ancing 284, Domain Name Service resolution 286, accelera-
tion 288 and an application firewall 290. In some embodi-
ments, the vServer 275 establishes a connection to a service
270 of a server 106. The service 275 may comprise any
program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi-
ments, the service 270 may communicate on a specific IP
address, or IP address and port.



US 9,235,448 B2

23

In some embodiments, the vServer 275 applies one or more
policies of the policy engine 236 to network communications
between the client 102 and server 106. In one embodiment,
the policies are associated with a VServer 275. In another
embodiment, the policies are based on a user, or a group of
users. In yet another embodiment, a policy is global and
applies to one or more vServers 275a-275n, and any user or
group of users communicating via the appliance 200. In some
embodiments, the policies of the policy engine have condi-
tions upon which the policy is applied based on any content of
the communication, such as internet protocol address, port,
protocol type, header or fields in a packet, or the context of the
communication, such as user, group of the user, vServer 275,
transport layer connection, and/or identification or attributes
of the client 102 or server 106.

In other embodiments, the appliance 200 communicates or
interfaces with the policy engine 236 to determine authenti-
cation and/or authorization of a remote user or a remote client
102 to access the computing environment 15, application,
and/or data file from a server 106. In another embodiment, the
appliance 200 communicates or interfaces with the policy
engine 236 to determine authentication and/or authorization
of'a remote user or aremote client 102 to have the application
delivery system 190 deliver one or more of the computing
environment 15, application, and/or data file. In yet another
embodiment, the appliance 200 establishes a VPN or SSL
VPN connection based on the policy engine’s 236 authenti-
cation and/or authorization of a remote user or a remote client
103 In one embodiment, the appliance 102 controls the flow
of'network traffic and communication sessions based on poli-
cies of the policy engine 236. For example, the appliance 200
may control the access to a computing environment 15, appli-
cation or data file based on the policy engine 236.

In some embodiments, the vServer 275 establishes a trans-
port layer connection, such as a TCP or UDP connection with
a client 102 via the client agent 120. In one embodiment, the
vServer 275 listens for and receives communications from the
client 102. In other embodiments, the vServer 275 establishes
a transport layer connection, such as a TCP or UDP connec-
tion with a client server 106. In one embodiment, the vServer
275 establishes the transport layer connection to an internet
protocol address and port of a server 270 running on the server
106. In another embodiment, the vServer 275 associates a first
transport layer connection to a client 102 with a second trans-
port layer connection to the server 106. In some embodi-
ments, a vServer 275 establishes a pool of transport layer
connections to a server 106 and multiplexes client requests
via the pooled transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104'. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104', such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com-
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli-
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the client agent
102, decrypts the communications, and transmits the commu-
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer

5

10

15

20

25

30

35

40

45

50

55

60

65

24

connection may be a pooled transport layer connection. As
such, the appliance 200 provides an end-to-end secure trans-
port layer connection for the client 102 between the two
networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet
internet protocol or intranetIP 282 address of the client 102 on
the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected to
the second network 104' via the appliance 200, the appliance
200 establishes, assigns or otherwise provides an IntranetIP,
which is network identifier, such as IP address and/or host
name, for the client 102 on the second network 104'. The
appliance 200 listens for and receives on the second or private
network 104' for any communications directed towards the
client 102 using the client’s established IntranetIP 282. In one
embodiment, the appliance 200 acts as or on behalf of the
client 102 on the second private network 104. For example, in
another embodiment, a vServer 275 listens for and responds
to communications to the IntranetIP 282 of the client 102. In
some embodiments, if a computing device 100 on the second
network 104' transmits a request, the appliance 200 processes
the request as if it were the client 102. For example, the
appliance 200 may respond to a ping to the client’s IntranetIP
282. In another example, the appliance may establish a con-
nection, such as a TCP or UDP connection, with computing
device 100 on the second network 104 requesting a connec-
tion with the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com-
munications between the client 102 and server 106: 1) com-
pression; 2) decompression; 3) Transmission Control Proto-
col pooling; 4) Transmission Control Protocol multiplexing;
5) Transmission Control Protocol buffering; and 6) caching.
In one embodiment, the appliance 200 relieves servers 106 of
much of the processing load caused by repeatedly opening
and closing transport layers connections to clients 102 by
opening one or more transport layer connections with each
server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech-
nique is referred to herein as “connection pooling”.

In some embodiments, in order to seamlessly splice com-
munications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing”. In
some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl-
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement expected by the
client 102 on the appliance’s 200 transport layer connection
to the client 102. In some embodiments, the packet checksum
of the transport layer protocol is recalculated to account for
these translations.

In another embodiment, the appliance 200 provides
switching or load-balancing functionality 284 for communi-
cations between the client 102 and server 106. In some



US 9,235,448 B2

25

embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application-
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the
appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides resolu-
tion of a DNS request from clients 102. In some embodi-
ments, the appliance intercepts’ a DNS request transmitted by
the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client’s DNS request with an
1P address of a server 106 determined by the appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and block-
ing illegitimate requests. In some embodiments, the applica-
tion firewall 290 protects against denial of service (DoS)
attacks. In other embodiments, the appliance inspects the
content of intercepted requests to identify and block applica-
tion-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili-
ties, such as one or more of the following: 1) bufter overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi-
soning, 6) broken access control list (ACLs) or weak pass-
words, 7) cross-site scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon-
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems vulnerabili-
ties, and 16) zero-day exploits. In an embodiment, the appli-
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica-
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica-
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.

In still yet other embodiments, the application firewall 290
protects any confidential information contained in the net-
work communication. The application firewall 290 may
inspect or analyze any network communication in accordance
with the rules or polices of the engine 236 to identify any
confidential information in any field of the network packet. In
some embodiments, the application firewall 290 identifies in
the network communication one or more occurrences of a

40

45

55

26

credit card number, password, social security number, name,
patient code, contact information, and age. The encoded por-
tion of the network communication may comprise these
occurrences or the confidential information. Based on these
occurrences, in one embodiment, the application firewall 290
may take a policy action on the network communication, such
as prevent transmission of the network communication. In
another embodiment, the application firewall 290 may
rewrite, remove or otherwise mask such identified occurrence
or confidential information.

Still referring to FIG. 2B, the appliance 200 may include a
performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appliance
200 receives the monitoring agent 197 from the monitoring
service 1908 or monitoring server 106 as depicted in FIG. 1D.
In some embodiments, the appliance 200 stores the monitor-
ing agent 197 in storage, such as disk, for delivery to any
client or server in communication with the appliance 200. For
example, in one embodiment, the appliance 200 transmits the
monitoring agent 197 to a client upon receiving a request to
establish a transport layer connection. In other embodiments,
the appliance 200 transmits the monitoring agent 197 upon
establishing the transport layer connection with the client
102. In another embodiment, the appliance 200 transmits the
monitoring agent 197 to the client upon intercepting or
detecting a request for a web page. In yet another embodi-
ment, the appliance 200 transmits the monitoring agent 197 to
a client or a server in response to a request from the monitor-
ing server 198. In one embodiment, the appliance 200 trans-
mits the monitoring agent 197 to a second appliance 200' or
appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut-
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor-
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni-
tors the performance of any user sessions traversing the appli-
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres-
sion. In some embodiments, the monitoring agent 197 mea-
sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea-
sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
200.

C. Client Agent

Referring now to FIG. 3, an embodiment ofthe client agent
120 is depicted. The client 102 includes a client agent 120 for
establishing and exchanging communications with the appli-
ance 200 and/or server 106 via a network 104. In brief over-
view, the client 102 operates on computing device 100 having
an operating system with a kernel mode 302 and a user mode
303, and a network stack 310 with one or more layers 310a-



US 9,235,448 B2

27

3106. The client 102 may have installed and/or execute one or
more applications. In some embodiments, one or more appli-
cations may communicate via the network stack 310 to a
network 104. One of the applications, such as a web browser,
may also include a first program 322. For example, the first
program 322 may be used in some embodiments to install
and/or execute the client agent 120, or any portion thereof.
The client agent 120 includes an interception mechanism, or
interceptor 350, for intercepting network communications
from the network stack 310 from the one or more applica-
tions.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro-
tocols for any of the following layers of the OSI model: 1)
physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LLAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter-
net protocol.

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application Pro-
gramming Interface (MAPI) (email), File Transfer Protocol
(FTP), HyperText Transfer Protocol (HTTP), Common Inter-
net File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop
Protocol (RDP), Wireless Application Protocol (WAP),
Mobile IP protocol, and Voice Over IP (VoIP) protocol. In
another embodiment, the network stack 310 comprises any
type and form of transport control protocol, such as a modi-
fied transport control protocol, for example a Transaction
TCP (T/TCP), TCP with selection acknowledgements (TCP-
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol. In other embodiments, any type and
form of user datagram protocol (UDP), such as UDP over IP,
may be used by the network stack 310, such as for voice
communications or real-time data communications.

Furthermore, the network stack 310 may include one or
more network drivers supporting the one or more layers, such
as a TCP driver or a network layer driver. The network drivers
may be included as part of the operating system of the com-
puting device 100 or as part of any network interface cards or
other network access components of the computing device
100. In some embodiments, any of the network drivers of the
network stack 310 may be customized, modified or adapted to
provide a custom or modified portion of the network stack
310 in support of any of the techniques described herein. In
other embodiments, the acceleration program 120 is designed
and constructed to operate with or work in conjunction with
the network stack 310 installed or otherwise provided by the
operating system of the client 102.

10

15

20

25

30

35

40

45

50

55

60

65

28

The network stack 310 comprises any type and form of
interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com-
munications of the client 102. In one embodiment, an inter-
face to the network stack 310 comprises an application pro-
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro-
vide any type and form of data structure, such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver
or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or operate
in user-mode 303, such as an application layer of the network
stack 310. For example, a first portion 310a of the network
stack may provide user-mode access to the network stack 310
to an application while a second portion 310a of the network
stack 310 provides access to a network. In some embodi-
ments, a first portion 310a of the network stack may comprise
one or more upper layers of the network stack 310, such as
any of layers 5-7. In other embodiments, a second portion
3105 of the network stack 310 comprises one or more lower
layers, such as any of layers 1-4. Each of the first portion 310a
and second portion 3105 of the network stack 310 may com-
prise any portion of the network stack 310, at any one or more
network layers, in user-mode 203, kernel-mode, 202, or com-
binations thereof, or at any portion of a network layer or
interface point to a network layer or any portion of or interface
point to the user-mode 203 and kernel-mode 203.

The interceptor 350 may comprise software, hardware, or
any combination of software and hardware. In one embodi-
ment, the interceptor 350 intercept a network communication
at any point in the network stack 310, and redirects or trans-
mits the network communication to a destination desired,
managed or controlled by the interceptor 350 or client agent
120. For example, the interceptor 350 may intercept a net-
work communication of a network stack 310 of a first network
and transmit the network communication to the appliance 200
for transmission on a second network 104. In some embodi-
ments, the interceptor 350 comprises any type interceptor 350
comprises a driver, such as a network driver constructed and
designed to interface and work with the network stack 310. In
some embodiments, the client agent 120 and/or interceptor
350 operates at one or more layers of the network stack 310,
such as at the transport layer. In one embodiment, the inter-
ceptor 350 comprises a filter driver, hooking mechanism, or
any form and type of suitable network driver interface that
interfaces to the transport layer of the network stack, such as
via the transport driver interface (TDI). In some embodi-
ments, the interceptor 350 interfaces to a first protocol layer,
such as the transport layer and another protocol layer, such as



US 9,235,448 B2

29

any layer above the transport protocol layer, for example, an
application protocol layer. In one embodiment, the intercep-
tor 350 may comprise a driver complying with the Network
Driver Interface Specification (NDIS), or a NDIS driver. In
another embodiment, the interceptor 350 may comprise a
min-filter or a mini-port driver. In one embodiment, the inter-
ceptor 350, or portion thereof, operates in kernel-mode 202.
In another embodiment, the interceptor 350, or portion
thereof, operates in user-mode 203. In some embodiments, a
portion of the interceptor 350 operates in kernel-mode 202
while another portion of the interceptor 350 operates in user-
mode 203. In other embodiments, the client agent 120 oper-
ates in user-mode 203 but interfaces via the interceptor 350 to
a kernel-mode driver, process, service, task or portion of the
operating system, such as to obtain a kernel-level data struc-
ture 225. In further embodiments, the interceptor 350 is a
user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro-
gramming interface (API) calls to set the destination infor-
mation, such as destination IP address and/or port to a desired
location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a [P
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
1P address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com-
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
200.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits the
intercepted DNS request to the appliance 200 for DNS reso-
Iution. In one embodiment, the appliance 200 resolves the
DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a DNS
server 106.

In yet another embodiment, the client agent 120 may com-
prise two agents 120 and 120'. In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi-
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120'.

The client agent 120 and/or interceptor 350 may operate at
or interface with a protocol layer in a manner transparent to
any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica-
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the client

10

15

20

25

30

35

40

45

50

55

60

30

agent 120 and/or interceptor 350 can interface with the trans-
port layer to secure, optimize, accelerate, route or load-bal-
ance any communications provided via any protocol carried
by the transport layer, such as any application layer protocol
over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a manner
transparent to any application, auser ofthe client 102, and any
other computing device, such as a server, in communications
with the client 102. The client agent 120 and/or interceptor
350 may be installed and/or executed on the client 102 in a
manner without modification of an application. In some
embodiments, the user of the client 102 or a computing device
in communications with the client 102 are not aware of the
existence, execution or operation of the client agent 120 and/
or interceptor 350. As such, in some embodiments, the client
agent 120 and/or interceptor 350 is installed, executed, and/or
operated transparently to an application, user of the client
102, another computing device, such as a server, or any of the
protocol layers above and/or below the protocol layer inter-
faced to by the interceptor 350.

The client agent 120 includes an acceleration program 302,
a streaming client 306, a collection agent 304, and/or moni-
toring agent 197. In one embodiment, the client agent 120
comprises an Independent Computing Architecture (ICA)
client, or any portion thereof, developed by Citrix Systems,
Inc. of Fort Lauderdale, Fla., and is also referred to as an ICA
client. In some embodiments, the client 120 comprises an
application streaming client 306 for streaming an application
from a server 106 to a client 102. In some embodiments, the
client agent 120 comprises an acceleration program 302 for
accelerating communications between client 102 and server
106. In another embodiment, the client agent 120 includes a
collection agent 304 for performing end-point detection/
scanning and collecting end-point information for the appli-
ance 200 and/or server 106.

In some embodiments, the acceleration program 302 com-
prises a client-side acceleration program for performing one
or more acceleration techniques to accelerate, enhance or
otherwise improve a client’s communications with and/or
access to a server 106, such as accessing an application pro-
vided by a server 106. The logic, functions, and/or operations
of'the executable instructions of the acceleration program 302
may perform one or more of the following acceleration tech-
niques: 1) multi-protocol compression, 2) transport control
protocol pooling, 3) transport control protocol multiplexing,
4) transport control protocol buffering, and 5) caching via a
cache manager. Additionally, the acceleration program 302
may perform encryption and/or decryption of any communi-
cations received and/or transmitted by the client 102. In some
embodiments, the acceleration program 302 performs one or
more of the acceleration techniques in an integrated manner
or fashion. Additionally, the acceleration program 302 can
perform compression on any of the protocols, or multiple-
protocols, carried as a payload of a network packet of the
transport layer protocol. The streaming client 306 comprises
an application, program, process, service, task or executable
instructions for receiving and executing a streamed applica-
tion from a server 106. A server 106 may stream one or more
application data files to the streaming client 306 for playing,
executing or otherwise causing to be executed the application
on the client 102. In some embodiments, the server 106 trans-
mits a set of compressed or packaged application data files to
the streaming client 306. In some embodiments, the plurality
of application files are compressed and stored on a file server
within an archive file such as a CAB, ZIP, SIT, TAR, JAR or
other archive. In one embodiment, the server 106 decom-



US 9,235,448 B2

31

presses, unpackages or unarchives the application files and
transmits the files to the client 102. In another embodiment,
the client 102 decompresses, unpackages or unarchives the
application files. The streaming client 306 dynamically
installs the application, or portion thereof, and executes the
application. In one embodiment, the streaming client 306
may be an executable program. In some embodiments, the
streaming client 306 may be able to launch another execut-
able program.

The collection agent 304 comprises an application, pro-
gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col-
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli-
ent’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and scanning mechanism, which identi-
fies and determines one or more attributes or characteristics of
the client. For example, the collection agent 304 may identify
and determine any one or more of the following client-side
attributes: 1) the operating system an/or a version of an oper-
ating system, 2) a service pack of the operating system, 3) a
running service, 4) a running process, and 5) a file. The
collection agent 304 may also identify and determine the
presence or versions of any one or more of the following on
the client: 1) antivirus software, 2) personal firewall software,
3) anti-spam software, and 4) internet security software. The
policy engine 236 may have one or more policies based on
any one or more of the attributes or characteristics of the client
or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with FIGS.
1D and 2B. The monitoring agent 197 may be any type and
form of script, such as Visual Basic or Java script. In one
embodiment, the monitoring agent 129 monitors and mea-
sures performance of any portion of the client agent 120. For
example, in some embodiments, the monitoring agent 129
monitors and measures performance of the acceleration pro-
gram 302. In another embodiment, the monitoring agent 129
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 129 moni-
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 129 monitors
and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 129 monitors and mea-
sures any resource of the client 102, such as memory, CPU
and disk.

The monitoring agent 197 may monitor and measure per-
formance of any application of the client. In one embodiment,
the monitoring agent 129 monitors and measures perfor-
mance of a browser on the client 102. In some embodiments,
the monitoring agent 197 monitors and measures perfor-
mance of any application delivered via the client agent 120. In
other embodiments, the monitoring agent 197 measures and
monitors end user response times for an application, such as
web-based or HTTP response times. The monitoring agent
197 may monitor and measure performance of an ICA or RDP
client. In another embodiment, the monitoring agent 197
measures and monitors metrics for a user session or applica-
tion session. In some embodiments, monitoring agent 197

25

30

40

45

50

55

32

measures and monitors an ICA or RDP session. In one
embodiment, the monitoring agent 197 measures and moni-
tors the performance of the appliance 200 in accelerating
delivery of an application and/or data to the client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin com-
ponent, such an ActiveX control or Java control or script that
is loaded into and executed by an application. For example,
the first program comprises an ActiveX control loaded and
run by a web browser application, such as in the memory
space or context of the application. In another embodiment,
the first program 322 comprises a set of executable instruc-
tions loaded into and run by the application, such as a
browser. In one embodiment, the first program 322 comprises
a designed and constructed program to install the client agent
120. In some embodiments, the first program 322 obtains,
downloads, or receives the client agent 120 via the network
from another computing device. In another embodiment, the
first program 322 is an installer program or a plug and play
manager for installing programs, such as network drivers, on
the operating system of the client 102.

D. GSLB Batchable and Hierarchical Site Configuration

Referring now to FIG. 4A, an embodiment of an environ-
ment of a multi-site deployment of appliances is depicted. In
brief overview, the deployment may include a plurality of
sites, such as Site A, Site B, Site C, Site D, Site and Site F.
Each of the sites may include one or more appliances 200A-
200F. A client 102 may access or communicate with any one
or more servers via any one or more appliances. Each of these
appliances may provide any type and form of services, con-
trol or management of the client’s access to one of more
servers 106 A-106N. Any of the appliances may communicate
with any other appliance or a client via one or more networks
104-104".

In further details of the example embodiment of FIG. 4A,
Site A comprises appliance 200A managing multiple servers,
server Svr-Al through server Svr-A2. Site B comprises appli-
ance 200B managing multiple servers, server Svr-B1 through
server Svr-B2. Site C comprises appliance 200C managing
multiple servers, server Svr-C1 through server Svr-C2. Site D
comprises appliance 200D managing multiple servers, server
Svr-D1 through server Svr-D2. Site E comprises appliance
200E managing multiple servers, server Svr-E1 through
server Svr-E2 and Site F comprises appliance 200F managing
multiple servers, server Svr-F1 through server Svr-F2.

In some embodiments, the multi-site deployment of FIG. 4
may represent a global server load balancing (GSLB) deploy-
ment. One or more of the appliances may be configured or
designed and constructed to provide global server load bal-
ancing, and sometimes are referred to GSLB or GSL.B appli-
ances. A GSLB appliance may be designed and configured to
received DNS requests from clients and resolve the domain
name of the request to an internet protocol address of a
selected appliance 200A-200F at any of the sites A-F. In
processing the DNS request, the GSLB appliance may use
any type and form of load balancing scheme to select a
desired site and/or appliance for processing or handling a
clientrequest. By way of example, Site A appliance 200A and
Site B appliance 200B may be configured as GSLB appli-
ances which load balance clients and client request among
Sites C, D, E and F, and in some embodiments, the appliances
200A and 200B also.

Any of'the sites and appliances of the environment may be
arranged, configured or deployed in any type and form of



US 9,235,448 B2

33

hierarchical or parent, child and/or peer relationship. Any one
appliance or site may be a peer to another appliance or site.
For example, appliance 200A may be a peer to appliance
200B for providing GSLB domain resolution services. Any
one appliance or site may be a parent node of another appli-
ance or site. For example, appliance 200A at Site A may be a
parent site or appliance to appliance 200D of Site D. Any one
appliance or site may be a child node of another appliance or
site. For example appliance 200F at Site F may be a child node
to Site B and appliance B.

Each of the appliances may be configured the same or
differently from any other appliance. In some embodiments,
multiple appliances providing GSLB domain name services
may be configured the same. In other embodiments, multiple
appliances providing GSLB domain name servicing may be
configured differently. A Site may have multiple appliances,
each appliance configured the same or differently. Appliances
at one Site may be configured the same or differently as
appliances at another site. In view of the functionality of an
appliance previously described in connection with FIG. 2B,
one appliance may be configured to provided acceleration
and content switching while another appliance may be con-
figured to provide AppFw and SSL. VPN functionality. An
appliance may be configured to provide the functionality of
any of the embodiments of the appliance described herein,
such as in conjunction with FIGS. 2A and 2B. In some
embodiments, heterogeneous appliances may be deployed.
For example, a firstappliance may be provided as a product of
a first manufacturer and a second appliance may be provided
as a product of second manufacturer. In other embodiments,
homogenous appliances may be deployed in which any ver-
sion of the appliance is supplied by the same manufacturer. In
some embodiments, any combination of heterogeneous and
homogenous appliances may be deployed.

Referring now to FIG. 4B, an embodiment of an appliance
to provide a batchable and/or hierarchical configuration of
appliances in a multi-site deployment is depicted. In brief
overview, the appliance 200A may comprise any embodiment
of'a vServer 275. The appliance and/or vServer may be con-
figured to provide GSLB services for a multi-site deploy-
ment, such as load balancing Site B and Site C via one or more
networks 104. The appliance may include a configurator 410.
The configurator 410 may further include master/slave iden-
tification 415, a site hierarchy configuration 420 and a dis-
tributor 425. Via the configurator 410, the appliance may be
identified as a master node by the master/slave identifier 415.
The appliance 200A may be configured to have a site hierar-
chy configuration 420 comprising identification and configu-
ration of all the nodes in the multi-site deployment, such as in
FIG. 4A. This site hierarchy configuration 420 may be dis-
tributed, applied or published to other appliances via a dis-
tributor 425.

In further details, the configurator 410 may comprise any
type and form of function, operations or logic for configuring
avServer 275. The configurator 410 may comprise software,
hardware of any combination of software and hardware. The
configurator 310 may comprise an application, program,
library, script, process, service, task, thread or set of execut-
able instructions. The configurator may comprise any type
and form of user interface. In one embodiment, the configu-
rator 410 comprises a command line interface. In another
embodiment, the configurator 410 comprises a graphical user
interface. In some embodiments, the configurator 410 com-
prises a graphical user interface and a command line inter-
face. The configurator 410, for example, may include the CLI
212 and/or GUI 210 of embodiments of the appliance
described in conjunction with FIG. 2B. In some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

34

ments, the configurator is part of the vServer 275. In other
embodiments, the configurator interfaces to or communicates
with vServer 275.

The configurator 410 may configure any of the features,
operations or functionality of any of the embodiments of the
appliance described herein. The configurator 410 may estab-
lish and/or configure one or more vServers 275 of an appli-
ance. The configurator 410 may identify the servers and ser-
vices that each vServer manages. In some embodiments, the
configurator 410 establishes and configures a vServer to be a
GSLB vServer that provides GSLB load balancing. The con-
figurator 410 may identify services provided via other appli-
ances as a remote service of the GSLB server. In other
embodiments, the configurator 410 establishes and config-
ures a vServer to be a load balancing vServer, such as for
servers at a Site. The configurator 410 may identify on the
appliance the services of the servers managed by the appli-
ance.

The configurator 410 may configure a site hierarchy 420
for a multi-appliance or multi site deployment. The site hier-
archy 420 identify the relationships between sites and/or
appliances of sites in a multi-site deployment, such as for
GSLB. For example, the configurator 410 may identify which
appliances, sometimes referred to nodes, are parent, child
and/or peer nodes. In some embodiments, a user via the
configurator identifies an appliance as a parent site. In some
embodiments, the user configures and identifies multiple par-
ent sites. In some embodiments, the user identifies and con-
figures one or more peer nodes as the top of a hierarchy of
sites. The user may further identify and configure child nodes
to these top peer nodes, which in turn may parent nodes to
other appliances. In one embodiment, the user identifies and
configures one or more appliances as child nodes to any one
ormore parent nodes. In some of these embodiments, the user
identifies and configures a child node to be a parent to other
children nodes. In some embodiments, one or more parent
nodes below the top nodes may also be peer nodes. In another
embodiment, one or more child nodes may also be peer nodes.

The site hierarchy 420 may be defined, specified or con-
figured using any type and form of commands, instructions or
data. These command, instructions or data may in a form
readable, accessible or otherwise understood by the appliance
and/or vServer. In some embodiments, the site hierarchy 420
comprises a set of configuration commands. In some embodi-
ments, the site hierarchy 420 may comprise textual instruc-
tions and data. For example, in one embodiment, the site
hierarchy 420 is a file. In some embodiments, the site hierar-
chy 430 comprises a list of command line commands or
instructions to be processed by a user interface, such as CLI,
of the appliance. In another embodiment, the site hierarchy
420 comprises one or more scripts or executables. In some
embodiments, the site hierarchy 420 references or includes a
reference to any one or more files. In many embodiments, the
site hierarchy 420 includes one or more application program-
ming interface (API) calls. The site hierarchy 420 may be
batchable in that a single configuration or file may be
executed, run or established on a plurality of appliances.

The configurator 410 may include any type and form of
mechanism 415 for identifying an appliance or vServer as a
master node or slave node. The master identifier 415 may
include any configuration data, setting, flag or parameter
providing an identification of master. In some embodiments,
a user may set a flag or parameter to identify the node as a
master or slave. For example, in one embodiment, the user
may selected a user interface element of a GUI to identify the
appliance as a master. In another embodiment, the user may
pass a parameter, value or set a flag on a command line



US 9,235,448 B2

35

command via the CLI to identify the node as master. In other
embodiments, the site hierarchy 430 comprises data or con-
figuration command to set a node as a master. In some
embodiments, if the appliance is not identified as a master
node then by default and without specific identification the
appliance may be a slave node. In another embodiment, the
appliance a user selects to perform the configuration for the
multi-site deployment may be considered the master. In some
embodiments, any of the peer GSLB nodes may be a master
node. In another embodiment, multiple nodes may be a mas-
ter node. In some cases, one node may be a backup master
node to another node.

The distributor 425 may comprise any logic, operations or
functionality to publish, distribute or otherwise provide a
configuration to an appliance. In some embodiments, the
distributor comprises any type and form of communication
interface between appliances or between another computing
device and the appliance. In some embodiments, the distribu-
tor may download, upload or file transfer a configuration file
to an appliance. In other embodiments, the distributor may
email a configuration to a computing device or appliance. In
some embodiments, the distributor makes remote procedure
calls, such as remote shell calls from one appliance to another
appliance to distribute the configuration. In another embodi-
ments, the distributor may write configuration to any type and
form of computer readable medium. In another embodiments,
the configuration is distributed via a connection and a proto-
col supported by the appliances, such as the Metric Exchange
Protocol (MEP) described below. The distributor may distrib-
ute configuration via a secure call, command or connection,
such as for example, a secure SSH, a secure copy SCP or a
secure file transfer protocol (SFTP).

The interface 435 may comprise any logic, operations or
functionality to receive and apply configuration information.
In some embodiments, the interface may receive any configu-
ration via a file. In another embodiment, the interface may
receive a configuration via a metric exchange connection. In
some embodiments, the interface may receive a configuration
distributed by a distributor using any of the interface mecha-
nism described above in conjunction with the distributor. In
one embodiment, the interface may receive or apply configu-
ration via any type and form of remote command, procedure
or API calls. The interface may apply configuration to an
appliance via a secure call, command or connection, such as
for example, a secure SSH, a secure copy SCP or a secure file
transfer protocol (SFTP). In some embodiments, the interface
may received and apply configuration from a user via a
graphical user interface or command line interface. In some
embodiment, the interface is separate and distinct from the
distributor. In other embodiment, the interface and distributor
are combined into the same unit, logic or functionality.

An appliance may communicate with another appliance
via any type and form of protocol. In some embodiments and
as illustrated in FIG. 4B, the appliances communicate using
any form of a metric exchange protocol (MEP), such as the
MEP protocol provided by NetScaler appliances manufac-
tured by Citrix Systems, Inc. of Ft. Lauderdale, Fla. The
metric exchange protocol may be any transport layer proto-
col, any presentation layer protocol or any application layer
protocol. In one embodiment, the appliances uses a Simple
Network Management Protocol (SNMP) for communica-
tions. In another embodiment, the appliances use a common
management information protocol (CIMP). Any of these pro-
tocols may be used by the appliances to communicate,
exchange or provide any type and form of information, data,
metrics and/or statistics about the configuration, performance
and/or operation of the appliance or any component thereof.

10

15

20

25

30

35

40

45

55

60

65

36

In some embodiments, the appliance with the lower internet
protocol address initiates the connection or makes the con-
nection request. In other embodiments, the appliance with the
higher internet protocol address initiates the connection or
makes the connection request. In yet another embodiment,
the appliance identified first or identified as a parent initiates
the connection or makes the connection request. In one
embodiment, the appliance identified as a child initiates or
makes the connection request.

Referring now to FIG. 4C, an embodiment of a multi-
appliance and multi-site deployment is depicted. In brief
overview, this multi-site configuration is based on a peer to
peer relationship among all of the sites and appliances. Site A
and appliance 200A is a peer node to each of the appliances at
Sites B-F. Likewise, each of Site B, C, D and F are peer nodes
to the other sites. Each appliance at each site has a separate
and distinct configuration 420A-N. Based on the configura-
tion and the peer to peer relationship, each appliance estab-
lishes and has a metric exchange connection with each of the
peer appliances. In this embodiment of a type of hierarchy
and configuration, all the appliances are communicating with
and need to be configured to communicate with every other
appliance.

In the example embodiment of FIG. 4C, each of the appli-
ances have separate configuration. By way of example, the
following table shows a configuration or portion thereof to
identify each of the sites and nodes in the hierarchy of the
multi-site deployment. The add command illustrated below
has a syntax of:

add gslb<site identifier><internet protocol address>
This command adds a site to a gslb configuration and identi-
fies the site by a site identifier and an internet protocol
address. Any type and form of site identifier may be used
including any text, numerics or alphanumeric based charac-
ters. The IP address may be any desired or supported IP
address available via the networks of the deployment.

# Configuration on Site A 420A

add gslb site-A IP-A
add gslb site-B IP-B
add gslb site-D IP-D
add gslb site-E IP-E
add gslb site-C IP-C
# Configuration on Site B 420B

add gslb site-A IP-A
add gslb site-B IP-B
add gslb site-C IP-C
# Configuration on Site-C 420C

add gslb site-A IP-A

add gslb site-B IP-B

add gslb site-C IP-C

add gslb site-F IP-F

# Configuration on Site D 420D

add gslb site-A IP-A
add gslb site-D IP-D
# Configuration on Site E 420E

add gslb site-A IP-A
add gslb site-E IP-E
# Configuration on Site-F 420F

add gslb site-C IP-C
add gslb site-F IP-F

The above configuration lists a set of configuration com-
mands in a format for an example embodiment of the appli-
ance as a NetScaler appliance. Any other type and format of



US 9,235,448 B2

37

command or instruction may be used. As noted by each of the
site specific configurations 420A-420F, in some embodi-
ments, each site may only have a partial or limited view of the
entire topology or GSLB hierarchy.

Referring now to FIG. 4D, another embodiment of a multi-
site deployment is depicted. In this embodiment, a centralized
or single configuration 420 is used to configure the site hier-
archy of each appliance. In this manner, each of the appli-
ances may leverage a single configuration 420 to identify and
understand the site hierarchy. In brief over, the site hierarchy
of FIG. 4D includes three peering Sites A, B and C partici-
pating in GSLB. Sites D, E and F comprises sites acting as
child nodes to one of the peering nodes.

For the topology depicted in FIG. 4D, the site hierarchy
configuration may use an option for defining a site called the
“parentSite”. The parentSite identifies for a child node the site
identifier of an established site, the parent node. With this
option, a configuration can be created that will be batch-able
across all the sites.

420

# Define the 3 peering sites A, B, C participating in GSLB.

add gslb site-A IP-A
add gslb site-B IP-B
add gslb site-C IP-C
# Define the sites acting as child nodes: D, E, F

add gslb site-D IP-D -parentSite Site-A
add gslb site-E IP-E -parentSite Site-A
add gslb site-F IP-F -parentSite Site-C

Each of the appliances 200A-200F may execute and config-
ure one or more vServers based on the site hierarchy configu-
ration 420. Although illustrated with a format and parameter
referred to as parentSite, other embodiments may uses param-
eter options to identify child nodes, such as -childSite or to
identify peer nodes such as -peerSite.

With these options to identify nodes of a site hierarchy as
peer, child and/or parent, the same configuration provides the
logical relationship between sites and provides all the appli-
ances with a complete GSLB site topology. With this type of
site hierarchy configuration, each site knows which other
sites to connect with. In some embodiments, this site hierar-
chy configuration identifies the immediate sites an appliance
may reach via a network to connect with. In some embodi-
ments, this type of site hierarchy configuration identifies
those appliances or sits for received metrics or statistics via a
metric exchange connection, such as a particular GSLB ser-
vice’s statistics. With this type of site hierarchy configuration
which is batchable, in some embodiments, there may be no
change made by a an administrator to the configuration that is

20

25

30

40

38

deployed. That is, in some embodiments, the same GSLB site
hierarchy configuration is applied to all of the appliances in
the topology.

As illustrated in FIG. 4D, the number of connections
between appliances has been reduced. With the site hierarchy
configuration 420 identified the entire GSLB topology, every
site and appliance has knowledge of the total site topology.
With this information, an appliance may determine a desired
or optimized metric exchange connectivity with other appli-
ances. For example, in some embodiments, an appliance of
child site only connects to an appliance of a parent site. In
some embodiments, a parent site connects to peers that are
patents and to any direct children nodes.

In some embodiments, a child site makes an metric
exchange connection to a parent site. For example, appliance
200E at Site E may provide statistics via a connection to
patent site of appliance 200 A of Site A. The GSLB vServer of
appliance 200A may use these statistics to perform load bal-
ancing among the sites. In some embodiments, the child site
does connect to another child site. For example, appliance
200E may not connect to appliance 200D. In one embodi-
ment, the child site does not accept any connections from a
non-parent Site. For example, if appliance 200D attempts to
connect to appliance 200E, the appliance 200E may reject,
drop or otherwise not accept the connection request. In some
embodiments, the child site only accepts connections from a
direct parent site. In other embodiments, the child site accepts
connections from another child site, a peer site or an indirect
parent site.

For GSLB load balancing, statistics of the peer sites may be
exchanged. For example, in FIG. 4D, appliance 200 A of Site
and appliance 200B of Site B and appliance 200C of Site C
each have a metric exchange connection to each other. For
statistics of services on child sites of peers, the parent sites
provide this information. For example, appliance 200A
obtains statistics from child sites appliance 200D and appli-
ance 200E. Appliance 200A exchanges with appliances 200B
and 200C the statistics from appliances 200D and 200E.
Likewise, appliance 200C obtains statistics from appliance
200F and provides these statistics to appliances 200B and
200A. If a site or appliance does not identify a parent site, in
some embodiments, the appliance identifies all sites as peers
and connects to each of these sites.

If none of the sites configured has a parentSite, then all sites
are considered as peers and every site has a metric exchange
connection to the other.

In some embodiments, the hierarchy may have any number
oflevels. In other embodiments, the hierarchy may be limited
to a predetermined number of levels. In one embodiments, a
site hierarchy may be limited to total number of 32 sites
participating in GSLB. By way of an example embodiment,
the following are the characteristics of a site at a particular
layer or level in the hierarchy.

An embodiment of a GSLB Site configuration (e.g., a parent
site):

1. DNS Config

2. LB Config

Optional with a There should be a predetermined number of sites
predetermined  for example, 2 sites that have DNS

minimum configuration.
DNS config allows for queries routed to these
sites to be answered for domains that the
appliance 200 does GSLB.

Optional These sites can have load balancing, content

switching or cache redirection configuration of
the IP’s participating in GSLB.

In some embodiments, the may also not have any
LB config also. In this case, they have all gslb
services as remote services and may also have a
DNS config.



US 9,235,448 B2

39

-continued

3. GSLB Config

4. MEP
Connections

5. Maximum

In some
embodiments,
required

Established

Predetermined
amount of
sites, such as
32

GSLB Config 420 specifies the site
configuration and identifies MEP connections to
establish.

MEP allows for stats to be collected

So that when DNS queries are received, a
decision can be made.

To be given to other peers if asked for.

A GSLB Sites established MEP to:

Peer GSLB (parent) Sites

Direct child sites.

There can be a predetermined maximum number of
sites in a given gslb config.

An embodiment of LB Site configuration (e.g., child sites)

40

1. DNS Config In some In one embodiments, there is not any not any
embodiments, DNS configuration on these sites. In some
not-Required ~ embodiments, The design of the site config

should be such that there should be not be
necessary for a child site to have to process DNS
queries.

2. LB Config In some These sites have LB/CS/CR config of the IP’s
embodiments, participating in GSLB.

Required
3. GSLB Config  Insome Only basic gslb config is required on the child site.

embodiments,

Only Add gslb site is done the child so that the

Basic child site knows the parent site to connect to.
4. MEP Established A LB Site establishes MEP to a parent site.
Connections
5. Maximum A There can be a predetermined maximum number of
predetermined  sites, such as 1024
maximum,

such as 1024

Although at times the site hierarchy is referenced to in the
context of GSLB as a GSLB site hierarchy, many embodi-
ments of the systems and methods described herein are
applied to a multi-site or multi-appliance deployment regard-
less if a GSLB context/environment or not.

Referring now to FIG. 4E, an embodiment of a method of
deploying a site hierarchy via a batchable configuration to
each of the appliances in a multi-appliance deployment is
depicted. In brief overview, at step 480, a GSLB site configu-
ration is configured or provided on an appliance identified as
a master node. At step 482, each of the appliances in the
multiple sites receives a copy of the GSLB site hierarchy
configuration. At step 484, each of the appliances apply the
GSLB site hierarchy configuration and identify itself in the
configuration. At step 486, each of the appliances identifies
peer information from the GSLB site hierarchical configura-
tion and step 488, each of the appliance identifies parent and
child information from the GSLB site hierarchy configura-
tion. At step 490, appliances establish metric exchange con-
nections responsive to the configuration.

In further details, at step 480, a user may configure any type
and form of site hierarchy, such as a GSLB site hierarchy, on
any appliance in a multi-site deployment. A user may define
or specify any topology for a GSLB site hierarchy with any
combination of one or more peer sites, parent sites and/or
child sites. In some embodiments, the user defines a site
hierarchy with a single top node. In other embodiments, the
user defines a site hierarchy with multiple peers nodes at the
top ofthe hierarchy. The user may specify in the site hierarchy
any number of levels of parent and child nodes. Each peer
node may be a parent to any number of sites. Each site that is
a child of a top node may also be parent node having any

35

40

45

50

55

60

65

number of children and each child may further be a parent to
any number of further children nodes.

A user, such as an administrator, may identify any appli-
ance of any site as a master node for configuring the site
hierarchy. In some embodiments, the user identifies a top
node as a master node. In another embodiment, the user
identifies an appliance that is a child of a parent site as the
master node. In some embodiments, the user identifies a
plurality of appliances as master nodes. In some cases, an
appliance is designated as a backup master node. In some
embodiments, the user specifies via configuration of the
appliance that the appliance is a master. In another embodi-
ment, an appliance is considered a master node because the
user configures the site hierarchy on that appliance.

At step 482, any of the other appliances in the site hierarchy
may receive a copy of the site hierarchy from a user, the
master node or otherwise from another appliance. In some
embodiments, a user or the appliance may distribute the site
hierarchy 420 of the master node to each of the other appli-
ances of the multi-site deployment. In some embodiments,
the user transfers an electronic or computer readable copy of
the site hierarchy via a computer readable medium from one
appliance to another appliance. In one embodiment, a user
configures any other appliance via the configuration on that
appliance, such as via the CLI or GUI of the appliance. In
another embodiment, the user or the master node publishes or
distributes the site hierarchy via the distributor 425. In some
embodiments, the user or the master node applies the site
hierarchy to one or more appliances via the interface 435.

At step 484, each of the appliances receiving the site hier-
archy executes or otherwise applies the configuration. An
interface 435 on each appliance may receive the site hierarchy



US 9,235,448 B2

41

configuration and execute or apply each configuration com-
mand. The configurator 410 on each appliance may receive
and apply each configuration command of the site hierarchy
configuration. In some embodiments, the appliance or any
portion thereof executes the site hierarchy configuration as a
batchable script via the CLI of the appliance. In other embodi-
ments, the configuration executes the site hierarchy as a
batchable set of configuration commands. For example,
either a CLI or GUI of the appliance may read in a site
hierarchy configuration file and process each line in the file a
configuration command. In some embodiments, an API call
to the configurator causes the configurator to apply each of the
configuration commands in the site hierarchy configuration.

The appliance applying the configuration may determine
or recognize any references to the site identifier supported,
hosted or otherwise provided via the appliance. The appliance
may comprise any configuration that identifies an identifier of
the site of the appliance. For example, the appliance 200A of
Site A may have an identifier of Site A configured for the
appliance. In some embodiments, the configurator or inter-
face of the configuration when processing the site hierarchy
configuration determines the one or more configuration com-
mands that reference the site identifier configured for that
appliance. In other embodiments, the configurator or inter-
face of the appliance determines any configuration com-
mands in the site hierarchy that reference the IP address
supported, hosted or otherwise provided via the appliance.
For example, appliance 200C may recognize that IP address
IP-C is the IP address for itself when applying the site hier-
archy configuration. In another embodiments, the appliances
may use a combination of site identifier and IP address to
recognize the configuration commands reference itself. In
any of these manners, an appliance may determine where in
the site hierarchy the appliance is configured based on the
recognition of the appliances site identifier and/or IP address.

Based on this and any of the other Site, parent, peer and/or
child information from the configuration, the appliance may
determine an entire topology of the site represented by the site
hierarchy configuration. In some embodiments, the appliance
may determine based on order or location of configuration
commands in the configuration the topology of the site. In
some embodiments, the appliance may determine via the
configuration based on parameters or options of configuration
commands or lack thereof, the site topology. The appliance
such as via configuration may store this site topology in any
manner, such as via data structures or files, in memory or
storage. In some embodiments, the appliance uses a tree
based data structure for representing the site hierarchy.

At step 486, each of the appliances identifies any peer
nodes from the configuration. During, upon or after applying
the site hierarchy configuration, the appliance, such as via
configurator, may determine the site identifier and/or IP
address of any peer nodes to itself. For example, any top level
GSLBsite, such as Sites A, b and C in FIG. 4D may determine
the other Sites at the same level in the hierarchy. In some
embodiments, the appliance determines those Sites not iden-
tifying any parent sides as the top level peer nodes. An appli-
ance at any level below the top level may identify other peer
nodes, such as child nodes which share the same parent node.
Being full topology aware, the appliance may configure, per-
form or operate based on the topology. For example, the
appliance may monitor services based on the topology. In
another example, the appliance may establish and share met-
rics based on the topology.

At step 488, each of the appliances identifies parent and/or
child information from the configuration. During, upon or
after applying the site hierarchy configuration, the appliance,

10

15

20

25

30

35

40

45

50

55

60

65

42

such as via configurator, may determine the site identifier
and/or IP address of any site identified as a parent. In some
embodiments, a direct parent of a site is identified via a
configuration parameter, such as for example, -parentSite. In
some embodiments, the appliance determines any site iden-
tified via a parent site identifier, including those Sites which
are not a direct parent to the current appliance. During, upon
or after applying the site hierarchy configuration, the appli-
ance, such as via configurator, may determine the site identi-
fier and/or IP address of any site identified or determined to be
a child. For example, an configuration command that speci-
fies a parent Site may include a site identifier and/or IP
address of the node that is a child node.

At step 490, each of the appliances established metric
exchange connection responsive to the GSLB site hierarchy
represented by the configuration. Upon applying the GSLB
site hierarchy configuration to the appliances deployed for the
multi-sites, each of the sites and appliances thereof have a
representation of the entire topology. Based on the recognized
topology and the configuration of the appliance, each appli-
ance may establish metric exchange connections with other
appliances according to the site hierarchy. In some embodi-
ments, an appliance of a child site establishes a connection
with an appliance of a parent site. In some embodiments, an
appliance of a parent Site establishes a connection with each
child Site. In another embodiment, each appliance of peer
Sites establishes a connection with each peer. In some
embodiments, depending on and/or responsive to the topol-
ogy, an appliance may not accept a connection from another
appliance. For example, an appliance of a child Site to a first
parent site may not accept a connection from a child Site of a
second parent site. In this manner, the appliances for the
multi-site deployment may more efficiently establish metric
exchange connections and share metrics in manner driven by
the topology.

E. GSLB Auto Synchronization

Referring now to FIGS. 5A and 5B, systems and methods
for synchronization configuration between appliances are
depicted. A user driven approach may used to configure an
appliance identified as a master node and synchronize that
configuration of master node with other appliances. For
example, as described in connection FIGS. 4A-4E, auser may
configure a site hierarchy 420. With the systems and methods
of FIGS. 5A and 5B, the user may synchronize each of the
appliances of a multi-site deployment to use the site hierarchy
configuration of the master node.

In a general over, this synchronization solution involves
identifying a site as the master GSLB node. All the other
nodes in the topology may automatically become slaves of
this master node. The master node may get the currently
running GSLB configuration of each of the slave nodes. For
example, the master node may be configured to login to each
of'the slave nodes. Each of these configuration are compared
with the currently running configuration of the master node.
The master node generates a configuration command set for
each slave node that can be applied on the slave node to get the
GSLB configuration of the slave the same as the master node.
The master node then applies each of these generates con-
figuration command sets to the corresponding slave node.

Referring now to FIG. 5A, an embodiment of an appliance
for synchronizing a configuration between appliances in a
multi-appliance or multi-site deployment is depicted. In brief
overview, appliances 200A, 200N and 200N may be deployed
in a multi-site environment. Appliance 200A may be
deployed at Site A while appliance 200B is deployed at Site B
and appliance 200C, at Site C. In this example embodiment,
appliance 200A may be designed via the master identifier 415



US 9,235,448 B2

43

as a master node. A user may configure a site hierarchy 420
via the configuration 410. The interface 425 of the configu-
ration may obtain the configurations 420B-C from each of
appliance 200B and 200C. The comparator 510 compares
each of the received configurations 420B and 430C with the
configuration 420 of the master node. A generator 515
responsive to the comparator generates a configuration com-
mand set 520B and 520C for each appliance. The master node
200A may apply via the interface 435 each of these configu-
ration command sets 520A-520N to the corresponding appli-
ance to synchronize each slave appliance configuration with
the master appliance configuration.

In further details, the configurator 410 may comprise any
embodiments of the master/slave mechanism 415, site hier-
archy 420 and the interface 425 described above in connec-
tion with FIGS. 4A-4E.

In further embodiments, the interface 420 may be designed
and constructed to authenticate and/or login to an appliance
using any authentication techniques and mechanism. In some
embodiments, the appliance may be configured to use a user
identifier and password to login via the interface to another
appliance, such as via a second interface of a second appli-
ance. In some embodiments, an appliance is configured with
a predetermined user id and password pair to use to login to
another appliance. For example, an appliance being logged
into may include and identify a userid and password for any
other appliance. In some embodiments, to avoid providing a
password by the master to login each time to a slave, the
appliances may have master-slave pairs to auto-login using
any type and form of public-key authentication methods. In
some embodiments, predetermined, special or internal user
ids may be used that do not have passwords.

In some embodiments, the interface may comprise initiat-
ing or executing any type and form of script on an appliance.
In some embodiments, the interface may execute a perl, awk
or sed script. The interface may make any local or remote
system calls, such as via the script or via an API. The interface
may make system calls to an operating system of the appli-
ance. In some embodiments, the interface may make an API
call to any application or program of the appliance. In one
embodiment, the interface uses a remote CLI functionality to
access and obtain information from a remote appliance. In
some embodiments, the configurator determinations that a
slave or remote node is not to be synchronized. For example,
one site node specifies via configuration or metric exchange
that is not selected to be part of a synchronization process. In
some embodiments, a site appliance may provide information
indicating that the configuration on that appliance should not
be changed. In one embodiment, a site appliance may provide
information indicating that synchronization of the configura-
tion on that appliance should be skipped.

The configurator of the master node, such as via the inter-
face may automatically login to each slave node and use one
or more remote calls, such as SSH, SFTP and/or SCP to
retrieve the configuration from the slave node. Likewise, the
configurator of the master node may automatically login to
each slave node and via one or more remote calls, such as
SSH, SFTP and/or SCP apply an updated configuration to
each slave node. The configurator may determine a list of
appliances or sites to retrieve a configuration via the site
hierarchy configuration 420. For example, the configurator
420 may access and/or read from memory or storage the
current site hierarchy configuration of the master node. In
another embodiment, the configurator may execute a com-
mand to output the locally running site configuration 410. The
configuration may capture this output. The configurator may
order the list of slave nodes for obtaining the configuration in

20

30

40

45

55

44

any order. In some embodiments, the configurator may enu-
merate the list of slave nodes by Site identifier and/or IP
address. In another embodiment, the configurator may enu-
merate the list of slave nodes in accordance with the topology
of the site, such as top peer nodes first, then child nodes of
these top nodes next, and so on.

With an enumerated list of slave nodes, the configurator,
such as via the interface, may login to each slave node and
retrieve the current configuration. The configurator may
obtain the userid and password or authentication credentials
for a slave in the list. Each slave node may have the same or
different credentials. Using the credentials, the configurator
ma login to the appliance of the slave node. The configurator
may execute a command on the slave node to output or pro-
vide the current running configuration of the appliance. The
configuration may transfer or copy the slave node’s configu-
ration to the master node. For example, the configurator may
execute a remote shell to output the GSLB site configuration
of'a remote node to a file and remote copy or file transfer the
file to the master node.

The configurator may comprise any type and form of com-
parator 510 for comparing one configuration to another con-
figuration. The comparator may comprise any of the software
and/or hardware embodiments of the configurator described
in conjunction with FIG. 4B. The comparator may comprise
logic, functions or operations to perform a difference between
each of the configuration commands of one configuration
420A to the configuration commands of a second configura-
tion 420B. For example, the comparator may perform a com-
mand by command comparison. In some embodiments, the
comparator identifies the configuration commands for a site
in one configuration and compares the similarities and difter-
ences of the configurations commands for that site in a second
configuration. The comparator may perform this comparison
for each of the sites in the enumerated list of sites. In some
embodiments, the comparator determines the site topology of
each of the configurations being compared and outputs dif-
ferences between the site topologies. In some embodiments,
the comparator determines the site topology represented by
each configuration and outputs those portions of the topology
that are the same. In these embodiments, the comparator may
compare the topologies of each configuration, such as via
traversing any type and form of tree representation, such as a
linked list or data structure in memory. The comparator 510
may output the results of the comparison in any form or
format. In some embodiments, the comparator produces a file
of'the differences and/or similarities. In another embodiment,
the comparator provides a data structure or an object com-
prising information of the differences and/or similarities. In
some embodiments, the comparator provides the differences
or similarities in the form of a site configuration 420.

The configurator 420 may comprise a generator 515 that
generates, produces or provides a configuration command set
520A-520N to address any differences in configuration
between compared configurations. The generator may com-
prise any ofthe software and/or hardware embodiments of the
configurator described in conjunction with FIG. 4B. The gen-
erator 515 may operate responsively to the comparator 510
and/or any output produced by the comparator. In some
embodiments, the generator operates responsively to any por-
tion of the configurator 410, such as the interface 425 or a CLI
or GUL

The generator 515 may generate any commands or instruc-
tions 520A-520N that changes one configuration to match or
synchronize with another configuration. For example, the
generator may generate a set of configuration commands to
change the configuration of a slave node to match or synchro-



US 9,235,448 B2

45

nize with the configuration of a master node. The generator
may generate the configuration synchronization command
set 520A-520N using the same command language, syntax or
format for the site hierarchy configuration 420. The generator
may generates commands, scripts or instructions as sup-
ported by the appliance. The command sets 520A-N may be
any type and form of script, for example a script that may be
executed via a CLI.

The commands sets 520 may include any commands,
instructions or configuration to add sites, remove sites and/or
change the configuration of a site or topology of the multi-site
hierarchy. The command sets 520 may include any com-
mands or instructions to change one or more parameters or
options of a site configuration. The commands sets 520 may
include any instructions to halt operations while making the
changes. The commands sets 520 may include any instruc-
tions to backup or save copies of the current configuration.
The commands sets 520 may include any instructions to set a
rollback point of the configuration. In some embodiments, the
commands set 520 are designed and generated such that the
result of running the command set is a currently running
configuration of a slave node matching or corresponding to
the currently running configuration of a master node. In some
embodiments, the commands set 520 are designed and gen-
erated such that the result of running the command set is a
currently running GSLB site hierarchy configuration of a
slave node matching or corresponding to the currently run-
ning GSLB site hierarchy configuration of a master node.

Each of the command sets may be the same or different. In
some embodiments, each of the retrieved configurations of
the slave nodes are different resulting in different command
sets to synchronize each of the slave. In other embodiments,
each of the retrieved configurations of the slave nodes are the
same resulting in the same command sets to synchronize each
of the slave. In another embodiment, some of the retrieved
configurations of the slave nodes are the same and others are
different resulting in some generated command sets being the
same and other generated command sets being different.

The configurator via the interface 425 may apply the con-
figuration commands sets to each slave appliance to synchro-
nize the configurations. In some embodiments, the configu-
rator synchronizes configurations responsive to the generator
and/or comparator. In other embodiments, the configurator
synchronizes configurations on a predetermined schedule. In
some embodiments, the configurator synchronizes configu-
rations based on a request from a slave node. In another
embodiment, the configurator synchronizes configurations
based on user input or responsive to a request of a user.

Referring now to FIG. 5B, an embodiment of steps of a
method for synchronizing configurations between appliances
is depicted. In brief overview, at step 580, a master node is
identified and the master node logs in to slave nodes. At step
582, the master node obtains the configuration from these
appliances. At step 584, the master node compares each of the
obtained configurations to the configuration of the master
node. At step 586, the master node generates a configuration
command set for each appliance based on the comparison. at
step 588, the master node applies each of the configuration
commands to the corresponding appliances to synchronize
configuration. At step 590, each of the appliances operate
with the synchronized configuration.

In further details, at step 580, a user, such as an adminis-
trator, may identify any appliance of any site as a master node
for configuring the site hierarchy. In some embodiments, the
user identifies a top node as a master node. In another embodi-
ment, the user identifies an appliance that is a child of a parent
site as the master node. In some embodiments, the user iden-

25

40

45

46

tifies a plurality of appliances as master nodes. In some cases,
an appliance is designated as a backup master node. In some
embodiments, the user specifies via configuration of the
appliance that the appliance is a master. In another embodi-
ment, an appliance is considered a master node because the
user configures the site hierarchy on that appliance.

The master node may be configured with or operating any
type of GSLB site hierarchy. The site hierarchy of the master
node may define or specify any topology with any combina-
tion of one or more peer sites, parent sites and/or child sites.
In some embodiments, the user defines a site hierarchy with a
single top node. In other embodiments, the user defines a site
hierarchy with multiple peers nodes at the top of the hierar-
chy. The user may specify in the site hierarchy any number of
levels of parent and child nodes. Each peer node may be a
parent to any number of sites. Each site that is a child of a top
node may also be parent node having any number of children
and each child may further be a parent to any number of
further children nodes.

At step 582, the master node may obtain site hierarchy
configuration from one or more other appliances or slave
nodes in the multi-site deployed represented by the master
node’s site hierarchy. In some embodiments, upon request of
a user, the master node identifies the appliances and sites in
the master’s nodes site hierarchy. The master node may auto-
matically login to each appliance using any predetermined
authentication scheme. The master node may execute any
shell or command line commands to obtain a site hierarchy
configuration of each of slave nodes and transfer or copy the
configuration to the master node. In some embodiments, the
master node obtains these configurations concurrently. In
other embodiments, the master node obtains these configura-
tions subsequently. The master node may uniquely identify
and store each configuration from each slave node in memory
or storage. In some embodiments, the master node determines
that one or more slave nodes should not be synchronized. For
example, configuration on the master node or slave node may
identify that a configuration of a slave node should not be
changed or the slave node is not participating in synchroni-
zation. Responsive to this identification, any one or more
steps of this method may be skipped or not performed.

At step 584, the master node such as via the comparator
compares each of the obtained slave node configurations with
the master’s node configuration. In some embodiments, the
master node performs this comparison upon receipt of the
slave node’s configuration. In other embodiments, the master
node performs this comparison upon receipt of configurations
from all identified slave nodes. In one embodiment, the mas-
ter node performs the comparison with batches of a plurality
of'slave node configurations. In some embodiments, the mas-
ter node determines if any of the slave node’s configuration
are the same and responsive to the determination performs a
comparison once for the common configuration.

At step 586, the master node generates a configuration
command set for each slave node configuration to synchro-
nize the slave nodes configuration with the master nodes
configuration. In some embodiments, the generator of the
master node generates a configuration command set respon-
sive to comparison by the comparator. In other embodiments,
the generator of the master node generates a configuration
command set for each slave node responsive to a user or user
request.

At step 588, the master node applies the commands sets to
synchronize configuration at each corresponding slave node.
In some embodiments, the interface of master node applies
the synchronization command sets responsive to the genera-
tor. In some embodiments, the interface of the master node



US 9,235,448 B2

47

applies the synchronization commands set upon generation.
In other embodiments, the interface of the master node
applies the synchronization command sets upon completion
of comparison and/or generation of all identified slave nodes
configuration. In some embodiments, the master node applies
the synchronization command sets concurrently with each
other. In other embodiments, the master node applies the
synchronization command sets subsequently to each other. In
some embodiments, the master node applies synchronization
command sets in accordance with levels of the hierarchy
starting from either the top node or a bottom leaf node.

At step 590, as a result of completing the synchronization
of configurations among the appliances in a multi-site
deployment, each of the appliances operates with at least a
same portion of the site hierarchy of the master node. In some
embodiments, each of the appliances operate with the same
GSLB site hierarchy. In other embodiments, some of the
appliances operates with the same GSLB site hierarchy while
some other appliances operate with a portion of the same
GSLB site hierarchy. Responsive to the updates or changes to
the GSLB site hierarchy, any one appliance may changes the
appliance’s operation in view of the update or change. In
some embodiments, one or more appliances may disestablish
or drop a metric exchange connection. In another embodi-
ment, one or more appliances may establish a metric
exchange connection.

Although the embodiment of the method of FIG. 5B may at
times be described in connection with a GSLB site hierarchy
420, the systems and methods described herein may be used
for any type and form of configuration that may be common,
shared or batchable across appliances.

Although the embodiment of the method of FIG. 5B is
described in view of the master node obtaining configura-
tions, performing comparison and generating configuration
changes, each of the slave nodes may obtain the master nodes
configuration, perform the comparison and generate and
apply the configuration changes on the slave node.

What is claimed:

1. A method for configuring one or more global server load
balancing (GSLB) appliances and one or more load balancing
appliances via a single configuration to represent a GSLB site
hierarchy, the method comprising:

a) receiving, by each of a plurality of appliances, a single
configuration representing a GSLB site hierarchy, com-
prising a plurality of levels, the GSLB site hierarchy
comprising a plurality of sites, each site of the plurality
of'sites having one or more appliances of the plurality of
appliances, each of the appliances deployed at a level of
the plurality of levels;

b) identifying, by a first appliance of the plurality of appli-
ances, from the single configuration during configura-
tion of the first appliance that the first appliance is a first
node corresponding to a first GSLB site in the GSLB site
hierarchy, the first appliance providing GSLB to the
plurality of sites in the GSLB site hierarchy;

¢) identifying, by a second appliance of the plurality of
appliances, from the single configuration during con-
figuration of the second appliance that the second appli-
ance is a second node corresponding to a second site in
the GSLB site hierarchy, the second appliance providing
load balancing for a plurality of servers at the second site
in the GSLB site hierarchy;

d) identifying, by the second appliance, from the single
configuration during configuration of the second appli-
ance that the first node of the first GSLB site is a parent
node at a first level of the plurality of levels in the GSLB

10

15

25

30

40

45

50

65

48

site hierarchy to the second node of the second appliance
at the second site at a second level of the plurality of
levels;

e) establishing, by each of the plurality of appliances, a
metric exchange connection with at least one appliance
at a different level of the plurality of levels of the GSLB
site hierarchy based on the topology of the GSLB site
hierarchy to exchange load balancing statistics via trans-
port layer connections; and

f) exchanging, by each of the plurality of appliances, load
balancing statistics with the at least one appliance at the
different level of the plurality of levels of the GSLB site
hierarchy based on the topology of the GSLB site hier-
archy.

2. The method of claim 1, wherein step (a) further com-
prises receiving, by each of the plurality of appliances, the
single configuration identifying peer GSLB nodes in the
GSLB site hierarchy.

3. The method of claim 1, wherein step (a) further com-
prises receiving, by each of the plurality of appliances, the
single configuration identifying one or more child nodes of
one or more sites of the plurality of sites and a parent node of
a GSLB site for each of the one or more sites.

4. The method of claim 1, wherein step (b) further com-
prises identifying, by the first appliance, from the single con-
figuration one or more peer GSLB sites.

5. The method of claim 1, wherein step (c¢) further com-
prises identifying, by the second appliance, from the single
configuration one or more parent nodes in the GSLB site
hierarchy that are peer GSLB sites to the parent node of the
second site of the second appliance.

6. The method of claim 1, wherein step (c) further com-
prises identifying, by the second appliance, from the single
configuration one or more child nodes in the GSLB site hier-
archy that are child nodes to a third site.

7. The method of claim 1, wherein step (d) further com-
prises identifying, by the second appliance, from the single
configuration a second child node to the parent node of the
second appliance.

8. The method of claim 1, further comprising establishing,
responsive to the single configuration, a metric exchange
connection between the first appliance and the second appli-
ance.

9. The method of claim 1, further comprising not accept-
ing, by the second appliance responsive to the single configu-
ration, a request for a metric exchange connection from a
child node in a second site in the plurality of sites.

10. The method of claim 1, wherein step (c) further com-
prises establishing, responsive to the single configuration, a
metric exchange connection between the first appliance and
one or more appliances that are peer nodes of the first GSL.B
site.

11. A system for configuring one or more global server load
balancing (GSLB) appliances and one or more load balancing
appliances via a single configuration to represent a GSLB site
hierarchy the system comprising:

a plurality of appliances of one or more networks, each of
the plurality of appliances having a configuration inter-
face for receiving a configuration representing a GSLB
site hierarchy, comprising a plurality of levels, the
GSLB site hierarchy comprising a plurality of sites, each
site of the plurality of sites having one or more appli-
ances of the plurality of appliances, each appliance at a
level of the plurality of levels;

a first appliance of the plurality of appliances identitying
during configuration of the first appliance from a single
configuration received by the first appliance that the first



US 9,235,448 B2

49

appliance comprises a first node corresponding to a first
GSLB site in the GSLB site hierarchy, the first appliance
providing GSLB for a plurality of sites in the GSLB site
hierarchy; and
a second appliance of the plurality of appliances identify-
ing during configuration of the second appliance from
the single configuration that the second appliance com-
prises a second node corresponding a second site in the
GSLB site hierarchy that provides load balancing for a
plurality of servers at the second site and identifying
during configuration of the second appliance from the
single configuration that the first node of first GSLB site
of the first appliance, at a first level of the plurality of
levels, is a parent node in the GSLB site hierarchy to the
second node of the second appliance at the second site at
a second level of the plurality of levels;
wherein each of the plurality of appliances establishes a
metric exchange connection with at least one appliance
at a different level of the plurality of levels of the GSLB
site hierarchy based on the topology of the GSLB site
hierarchy to exchange load balancing statistics via trans-
port layer connections and exchanges load balancing
statistics with the at least one appliance at the different
level of'the plurality of levels of the GSLB site hierarchy.
12. The system of claim 11, wherein the configuration
interface of each of the plurality of appliances receives the
single configuration identifying peer GSLB nodes in the
GSLB site hierarchy.
13. The system of claim 11, wherein the configuration
interface of each of the plurality of appliances receives the
single configuration identifying one or more child nodes of

50

one or more sites of the plurality of sites and a parent node of
a GSLB site for each of the one or more sites.

14. The system of claim 11, wherein the first appliance
identifies from the received single configuration one or more
peer GSLB sites.

15. The system of claim 11, wherein the second appliance
identifies from the received single configuration one or more
parent nodes in the GSLB site hierarchy that are peer GSLB
sites to the parent node of the second site of the second
appliance.

16. The system of claim 11, wherein the second appliance
identifies from the received single configuration one or more
child nodes in the GSLB site hierarchy that are child nodes to
a third site.

17. The system of claim 11, wherein the second appliance
identifies from the received single configuration a second
child node to the parent node of the second appliance.

18. The system of claim 11, wherein the first appliance and
the second appliance establish responsive to the single con-
figuration, a metric exchange connection between the first
appliance and the second appliance.

19. The system of claim 11, wherein the second appliance
responsive to the single configuration does not accept a
request for a metric exchange connection from a child node in
a second site in the plurality of sites.

20. The system of claim 11, wherein step (c) further com-
prises establishing, responsive to the single configuration, a
metric exchange connection between the first appliance and
one or more appliances that are peer nodes of the first GSL.B
site.



